Multiplé-Precision Binary Comparison

(MPBCMP)

6J

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags
appropriately. The Zero flag is set to 1 if the
operands are equal and to 0 if they are not
equal. The Carry flag is set to 0 if the operand
with the address' higher in the stack (the
subtrahend) is larger than the other operand
(the minuend); the Carry flag is set to 1
otherwise. Thus, the flags are set as if the
subtrahend had been subtracted from the
minuend.

Procedure: The program compares the
operands one byte at a time, starting with the
most significant bytes and continuing until it
finds corresponding bytes that are not equal.
If all the bytes are equal, it exits with the Zero
flag set to 1. Note that the comparison works
through the operands starting with the most
significant bytes, whereas the subtraction
(Subroutine 6G) starts with the least signifi-
cant bytes.

Registers Used: All

Execution Time: 17 cycles per byte that must be
compared plus 90 cycles overhead. That is, the
program continues until it finds corresponding
bytes that are not equal; each pair of bytes it must
examine requires 17 cycles.

Examples:
1. Comparing two 6-byte numbers that are equal
17 X 6 + 90 = 192 cycles

2. 'Comparing two 8-byte numbers that differ in
the next to most significant bytes

17 X 2 4+ 90 = 124 cycles
Program Size: 54 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
numbers; the pointers start at addresses
MINPTR (00DO0,; in the listing) and SUBPTR
(00D2/; in the listing).

Special Case: A length of zero causes an
immediate exit with the Carry flag and the Zero
flag both set to 1.

Entry Conditions

Order in stack (starting from top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
subtrahend (address containing the least
significant byte)

More significant byte of starting address of
subtrahend (address containing the least
significant byte)

Less significant byte of starting address of
minuend (address containing the least sig-

Exit Conditions

Flags set as if subtrahend had been
subtracted from minuend

Zero flag = 1 if subtrahend and minuend are
equal, 0 if they are not equal

Carry flag = 0 if subtrahend is larger than
minuend in the unsigned sense, 1 if it is less
than or equal to the minuend.

275

276 ARTHMETIC

nificant byte)

More significant byte of starting address of
minuend (address containing the least sig-
nificant byte)

Examples

1. Data: Length of operands (in bytes) = 6 3. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = Top operand (subtrahend) =
19D028A193EA ¢ 19D028A193EA ¢
Bottom operand (minuend) = Bottom operand (minuend) =
4E67BC15A266,, OF37E5991D7C,¢

Result: Zero flag = 0 (operands are Result: Zero flag = 0 (operands are not equal)

not equal) Carry flag = 0 (subtrahend is larger
Carry flag = 1 (subtrahend is than minuend)

not larger than minuend)

2. Data: Length of operands (in bytes)
=6
Top operand (subtrahend) =
19D028A193EA 4
Bottom operand (minuend) =
19D028A193EA

Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is
not larger than minuend)

; Title Multiple-Precision Binary Comparision ;
; Name: MPBCMP H
H H
; ;
Purpose:) Compare 2 arrays of binary bytes and return

the CARRY and ZERO flags set or cleared

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (subtrahend) address,
High byte of array 2 (subtrahend) address,
Low byte of array 1 (minuend) address,
High byte of array 1 (minuend) address

s ™o wa we e Ne W we We %o we N WO
~e %o we wa me WE we We W s me Ne e

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBcMP) 277

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Exit: IF ARRAY 1 = ARRAY 2 THEN
C=1l,z2=1

IF ARRAY 1 > ARRAY 2 THEN
C=1,2=0

IF ARRAY 1 < ARRAY 2 THEN
C=0,2=0

Registers used: All

Time: 17 cycles per byte that must be examined
plus 90 cycles overhead.

Size: Program 54 bytes
Data 2 bytes plus

4 bytes in page zero

T NS NE WO N N WE N NE N NE W N N W me we we s w6 ne we
TE WO ME Ne e NE N Ne NE e N0 e we N e na we e ws N Ne W

; EQUATES
MINPTR: .EQU 0DOH ;PAGE ZERO FOR ARRAY 1 POINTER
SUBPTR: .EQU 0D2H : ;PAGE ZERO FOR ARRAY 2 POINTER
MPBCMP:

}SAVE RETURN ADDRESS

PLA

STA RETADR

PLA :

STA RETADR+1 ;SAVE RETURN ADDRESS

;GET LENGTH OF ARRAYS

PLA

TAY

JGET ADDRESS OF SUBTRAHEND AND SUBTRACT 1 TO SIMPLIFY INDEXING

PLA

SEC- ,

SBC #1 ;SUBTRACT 1 FROM LOW BYTE

STA SUBPTR

PLA

SBC #0 ;SUBTRACT ANY BORROW FROM HIGH BYTE

STA SUBPTR+1

;GET ADDRESS OF MINUEND AND ALSO SUBTRACT 1

PLA

SEC

SBC $1 ;SUBTRACT 1 FROM LOW BYTE

STA MINPTR

PLA -

SBC #$0 iSUBTRACT ANY BORROW FROM HIGH BYTE

STA MINPTR+1

278 ARTHMETIC

; RESTORE RETURN ADDRESS

LDA RETADR+1
PHA
LDA RETADR
PHA
;INITIALIZE
CPY #0 ;IS LENGTH OF ARRAYS = 0 ?
BEQ EXIT ;YES, EXIT WITH C=1,Z=1
LOOP:
LDA (MINPTR) ,Y ;:GET NEXT BYTE
CMP (SUBPTR) , Y ;COMPARE BYTES .
BNE EXIT ;EXIT IF THEY ARE NOT EQUAL, THE FLAGS ARE SET
DEY ;DECREMENT INDEX
BNE LOOP ;CONTINUE UNTIL COUNTER = 0 _
; IF WE FALL THROUGH THEN THE ARRAYS ARE EQUAL
;: AND THE FLAGS ARE SET PROPERLY
EXIT:
RTS
;DATA
RETADR .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
H :
; H
: SAMPLE EXECUTION: ;
i ;
; H
SC0610:
LDA AY1ADR+1
PHA)
LDA AY1ADR
PHA ;PUSH AY1l ADDRESS
LDA AY2ADR+1
PHA
LDA AY2ADR
PHA ;PUSH AY2 ADDRESS
LDA $SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPBCMP ;MULTIPLE-~PRECISION BINARY COMPARISON
BRK ;RESULT OF COMPARE (7654321H,1234567H) IS
; C=1,2=0
JMP SC0610
SZAYS: .EQU 7 ;SIZE OF ARRAYS
AY1ADR: .WORD AY1l ;ADDRESS OF ARRAY 1 (MINUEND)
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2 (SUBTRAHEND)

AY1l:

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 279

.BYTE 021H
.BYTE 043H
.BYTE 065H
.BYTE 007H

+ BYTE 0
.BYTE 0
.BYTE 0

AY2:
.BYTE 067H
.BYTE 045H
.BYTE 023H
.BYTE 001H

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

Multiple-Precision Decimal Addition

(MPDADD)

6K

Adds two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant digits at the lowest address.
The sum replaces one of the numbers (the
one with the starting address lower in the
stack). The length of the numbers (in bytes)
is 255 or less. The program returns with the
Decimal Mode (D) flag cleared (binary
mode).

Procedure: The program first enters the
decimal mode by setting the D flag. It then
clears the Carry flag initially and adds the
operands one byte (two digits) at a time,
starting with the least significant digits. The
sum replaces the operand with the starting
address lower in the stack (array 1 in the list-
ing). A length of 00 causes an immediate exit
with no addition operations. The program
clears the D flag (thus placing the processor
in the binary mode) before exiting. The final

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles
overhead. For example, adding two 8-byte (16-
digit) operands takes 23 x 8 + 86 or 270 cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
operands, the pointers start at addresses
AYIPTR (00DO,¢ in the listing) and AY2PTR
(00D2,4 in the listing).

Special Case: A length of zero causes an
immediate exit with array 1 unchanged (that is,
the sum is equal to bottom operand). The
Decimal Mode flag is cleared (binary mode) and
the Carry flag is set to 1.

Carry flag reflects the addition of the most-
significant digits.

Entry Conditions

Order in stack (starting from iop}

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
second operand (address containing the
least significant byte of array 2)

More significant byte of starting address of
second operand (address containing the
least significant byte of array 2)

Less significant byte of starting address of
first operand and result (address contain-
ing the least significant byte of array 1)

280

Exit Conditions

First operénd (array 1) replaced by
first operand (array 1) plus
second operand (arr_ay 2).

D flag set to zero (binary mode).

6K MULTIPLE-PRECISION DECIMAL ADDITION {MPDADD) 281

More significant byte of starting address of
first operand and result (address contain-
ing the least significant byte of array 1)

Example

Data: Length of operands (in bytes) = 6
Top operand (array 2) = 1960288193154

Bottom operand (array 1) =
293471605987,

Result: Bottom operand (array 1) = Bottom
operand (array 1) + Top operand
(array 2) = 489500425302,
Carry = 0, Decimal Mode flag =
0 (binary mode)

; Title Multiple-Precision Decimal Addition ;
H Name: MPDADD H
H H
; ;

Purpose: Add 2 arrays of BCD bytes
. Arrayl := Arrayl + Array2

Entry: TOP OF STACK

Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 address,
High byte of array 2 address,
Low byte of array 1 address,
High byte of array 1 address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Exit: Arrayl := Arrayl + Array2

Registers used: All

Time: 23 cycles per byte plus 86 cycles
overhead,

DO NS N W NE N6 N6 SE ST N Ne N Ne e N N % S Ne e %o e we WO
T NS Ne e N M Ne N ne N N0 e NS S we e we we we we we we %6 we s

282 ARTHMETIC

Size: Program 50 bytes
Data 2 bytes plus
4 bytes in page zero

w. me we we we

s EQUATES
AY1PTR: .EQU ODOH ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ; PAGE ZERO FOR ARRAY 2 POINTER
MPDADD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

:GET LENGTH OF ARRAYS

PLA

TAX

:GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE SUM AND DECIMAL MODE, EXIT IF LENGTH = 0

LDY #0

CPX #0 ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;BRANCH IF LENGTH IS 0

SED ;SET DECIMAL MODE

CLC ;CLEAR CARRY
LOOP:

LDA (AY1PTR) ,Y ;GET NEXT BYTE

ADC (AY2PTR) , Y ;ADD BYTES

STA (AY1PTR) ,Y ;STORE SUM

INY ; INCREMENT ARRAY INDEX

DEX ; DECREMENT COUNTER

BNE LOOP ;CONTINUE UNTIL COUNTER = 0
EXIT:

CLD ;sRETURN IN BINARY MODE

~e s e we we

6K MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 283

RTS
; DATA
RETADR .BLOCK 2 ; TEMPORARY FOR RETURN ADDRESS
H H
H i
H SAMPLE EXECUTION: H
H H
SC0611:
LDA AY1ADR+1
PHA
LDA AY1ADR"
PHA ;PUSH AY1l ADDRESS
LDA AY2ADR+1
PHA
LDA AY2ADR
PHA ;PUSH AY2 ADDRESS
LDA #SZAYS
PHA ;PUSH SIZE OF ARRAYS
JSR MPDADD sMULTIPLE~-PRECISION BCD ADDITION
BRK sRESULT OF 1234567 + 1234567 = 2469134
; IN MEMORY AY1l = 34H
H AY1l+] = 91H
; AY1+42 = 46H
; AY1+3 = Q2H
H AY1+4 = 00H
; AY1+5 = 00H
H AY1+6 = Q0H
JMP SC0611
SZAYS: L.EQU 7 ;S1ZE OF ARRAYS
AY1ADR: .WORD AY1 ;ADDRESS OF ARRAY 1
AY2ADR: .WORD AY2 ;ADDRESS OF ARRAY 2
AY1l:
.BYTE 067H
.BYTE 04 5H
. .BYTE 023H
.BYTE 001H
.BYTE 0
.BYTE 0
.BYTE 0
AY2:

.BYTE 067H
.BYTE 045H
.BYTE 023H

284 ArTHMETIC

.BYTE 001H

.BYTE 0
.BYTE 0
.BYTE 0

.END ; PROGRAM

Multiple-Precision Decimal Subtraction

(MPDSUB)

6L

Subtracts two multi-byte unsigned
decimal numbers. Both numbers are stored
with their least significant digits at the lowest
address. The starting address of the
subtrahend (number to be subtracted) is
stored on top of the starting address of the
minuend (number from which the
subtrahend is subtracted). The difference
replaces the minuend in memory. The length
of the numbers (in bytes) is 255 or less. The
program returns with the Decimal Mode (D)
flag cleared (binary mode).

Procedure: The program first enters the
decimal mode by setting the D flag. It then
sets the Carry flag (the inverted borrow)

" initially and subtracts the subtrahend from
the minuend one byte (two digits) at a time,
starting with the least significant digits. The
final Carry flag reflects the subtraction of the
most significant digits. The difference re-
places the minuend (the operand with the
starting address lower in the stack, array 1 in

Registers Used: All

Execution Time: 23 cycles per byte plus 86 cycles
overhead. For example, subtracting two 8-byte
(16-digit) operands takes 23 X 8 + 86 or 270
cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in
RAM and four bytes on page 0. The two bytes
anywhere in RAM are temporary storage for the
return address (starting at address RETADR).
The four bytes on page 0 hold pointers to the two
operands; the pointers start at addresses
AYIPTR (00DO,, in the listing) and AY2PTR
(00D2¢ in the listing).

Special Case: A length of zero causes an
immediate exit with the difference equal to the
original minuend, the Decimal Mode flag cleared
(binary mode), and the Carry flag set to 1.

the listing). A length of 00 causes an immedi-
ate exit with no subtraction operations. The
program clears the D flag (thus placing the
processor in the binary mode) before exiting.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands. in bytes

Less significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

More significant byte of starting address of
subtrahend (address containing the least
significant byte of array 2)

Less significant byte of starting address of

Exit Conditions

Minuend (array 1) replaced by minuend
(array 1) minus subtrahend (array 2).

D flag set to zero (binary mode).

285

286 ARITHMETIC

minuend (address containing the least sig-

nificant byte of array 1)

More significant byte of starting address of
minuend (address containing the least sig-

nificant byte of array 1)

Example

Data:

Result:

w. we we ~e

Nt e ws W We e we We We We W Wy e We We W e e %o % S0

Length of operands (in bytes) = 6
Minuend (array 1) = 2934716059874
Subtrahend (array 2) = 196028819315,

Difference (array 1) = 097442786672,.

This numbeér replaces the original minuend

in memory. The Carry flag is set to 1 in accordance
with its usual role (in 6502 programming)

as an inverted borrow.

Decimal Mode flag = 0 (binary mode)

Title
Name:

Purpose:

Entry:

Exit:

Multiple-Precision Decimal Subtraction
MPDSUB

Subtract 2 arrays of BCD bytes
Minuend := Minuend - Subtrahend

TOP OF STACK .

Low byte of return address,

High byte of return address,
Length of the arrays in bytes,
Low byte of subtrahend address,
High byte of subtrahend address,
Low byte of minuend address,
High byte of minuend address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Arrayl := Arrayl - Array2

Registers used: All

~ we we we

Mo %e mE hE N Ne me N6 Ne N8 We WP We Ve ws We wa Ne e W we

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION (Mposug) 287

Time: 23 cycles per byte plus 86 cycles
overhead.

Size: Program 50 bytes
Data 2 bytes plus

4 bytes in page zero

W8 M Ne Ne we we W we we
e %o Ns e we e we ne e

i EQUATES
MINPTR: .EQU 0DOH ;PAGE ZERO FOR MINUEND POINTER
SUBPTR: .EQU 0D2H ;PAGE ZERO FOR SUBTRAHEND POINTER
MPDSUB;

iSAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX A

£ .

;GET STARTING ADDRESS OF SUBTRAHEND

PLA

STA SUBPTR

PLA

STA SUBPTR+1

;GET STARTING ADDRESS OF MINUEND

PLA

STA MINPTR

PLA

STA MINPTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

LDY " #0

CPX #0 ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;YES, EXIT

SED ;SET DECIMAL MODE

SEC ;SET CARRY
LOOP:

LDA (MINPTR) ,Y ;GET NEXT BYTE

SBC (SUBPTR) , Y ;SUBTRACT BYTES

STA (MINPTR) ,Y - iSTORE DIFFERENCE

INY : INCREMENT ARRAY INDEX

DEX ;DECREMENT COUNTER

BNE LOoOop :CONTINUE UNTIL COUNTER = 0

288 ARITHMETIC

EXIT:

H
;DATA
RETADR

~e we e ws we

8C0612:

SZAYS:

AY1ADR:
AY2ADR:

AY1l:

CLD
RTS

.BLOCK

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
. WORD

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

2

AY1ADR+1

AY1ADR

AY2ADR+1

“AY2ADR

#SZAYS

MPDSUB

sco612
2

Ayl
AY2

034H
091H
046H
002H

;RETURN IN BINARY MODE

; TEMPORARY FOR RETURN ADDRESS

;PUSH AY1l ADDRESS

; PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

:+MULTIPLE-PRECISION

BCD SUBTRACTION

;RESULT OF 2469134 - 1234567 = 1234567

IN MEMORY AY1l
AY1l+l
AY1+2
AY143
AY1+4
AY1+5
AY1+6

s we me me wa e w0

;sSIZE OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

67H
45H
23H
0lH
00H
00H
00H

(MINUEND)
(SUBTRAKEND)

~e we we we we

AY2:

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

0678
045H
023H
001n
0
0
0

; PROGRAM

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION {MPDSUB) 289

Multiple-Precision Decimal Multiplication

(MPDMUL)

6M

Multiplies two multi-byte unsigned
decimal numbers. Both numbers are stored
with their least significant digits at the lowest
address. The product replaces one of the
numbers (the one with the starting address
lower in the stack). The length of the num-
bers (in bytes) is 255 or less. Only the least
significant bytes of the product are returned
to retain compatibility with other multiple-
precision decimal operations. The program
returns with the Decimal Mode (D) flag
cleared (binary mode).

Procedure: The program handles each digit

of the multiplicand (array 1) separately. It
masks that digit off, shifts it (if it is in the
upper nibble of a byte), and then uses it as a
counter to determine how many times to add
the multiplier to the partial product. The least
significant digit of the partial product is saved
as the next digit of the full product and the
partial product is shifted right four bits. The
program uses a flag to determine whether itis
currently working with the upper or lower
digit of a byte. A length of 00 causes an exit
with no multiplication.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the size of the digits in the
multiplicand (since those digits determine how
many times the multiplier is added to the partial
product).

If the average digit in the multiplicand has a
value of 5, then the execution lime is approx-
imately

322 x LENGTH? + 390 X LENGTH + 100
cycles where LENGTH is the number of bytes in
the operand. If, for example, LENGTH = 6 (12
digits), the approximate execution time is

322 X 62 + 390 X 6 + 100 = 322 x 36 + 2340

+ 100 = 11,592 + 2440 = 14,032 cycles.
Program Size: 203 bytes

Data Memory Required: 517 bytes anywhere in
RAM plus four bytes on page 0. The 517 bytes
anywhere in RAM are temporary storage for the

partial product (255 bytes starting at address
PROD), the multiplicand (255 bytes starting at
address MCAND), the return address (two bytes
starting at address RETADR), the length of the
operands in bytes (one byte at address
LENGTH), the next digit in the operand (one
byte at address NDIGIT), the digit counter (one
byte at address DCNT), the byte index into the
operands (one byte at address IDX), and the
overflow byte (1 byte at address OVERFLW).
The four bytes on page 0 hold pointers to the two
operands; the pointers start at addresses
AYIPTR (00DO,, in the listing) and AY2PTR
(00D2,; in the listing).

Special Case: A length of zero causes an
immediate exit with the product equal to the orig-
inal multiplicand (array 1 is unchanged), the
Decimal Mode flag cleared (binary mode), and
the more significant bytes of the product (starting
at address PROD) undefined.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

290

Exit Conditions

Multiplicand (array 1) replaced by multipli-
cand (array 1) times multiplier (array 2).

D flag set to zero (binary mode).

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 291

Less significant byte of starting address of
multiplier (address containing the least
significant byte of array 2)

More significant byte of starting address of
multiplier (address containing the least
significant byte of array 2)

Less significant byte of starting address of
multiplicand (address containing the least

. significant byte of array 1)

More significant byte of starting address of
multiplicand (address containing the least
significant byte of array 1) '

Example Note that MPDMUL returns only the less
Data: Length of operands (in bytes) = 04 significant bytes of the product (that is, the
Top operand (array 2 or multiplier) number of bytes in the multiplicand and
= 00003518, o multiplier) to maintain compatibility with
'_3__"88636‘;‘;:”’”" (array 1 or multiplicand) per multiple-precision decimal arithmetic
6 operations. The more significant bytes of the
Result: Bottom operand (array 1) = Bottom
operand (array 1) * Top operand product are available starting with their least
(array 2) = 22142292, significant digits at address PROD. The user
Decimal Mode flag = 0 (binary mode) may need to check those bytes for a possible
overflow or extend the operands with addi-
tional zeros.
Title Multiple-Precision Decimal Multiplication
Name: MPDMUL
Purpose: Multiply 2 arrays of BCD bytes
Arrayl := Arrayl * Array2
Entry: TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (mulitplicand) address,
High byte of array 2 (multiplicand) address,
Low byte of array 1 (multiplier) address,
High byte of array 1 (multiplier) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

e NP NE WE Ne Ne NE NE L %e w0 e ne e e we wa we O e we
WO WO NE e WE N e Ne W6 N N W Ne NS NE ne N we N e we

Exit: Arrayl := Arrayl * Array2

292 ARITHMETIC

Registers used: All

Time: . Assuming the average digit value of ARRAY 1 is
5 then the time is approximately
(322 * length”2) + (390 * length) + 100 cycles

Size: Program 203 bytes
Data 517 bytes plus
4 bytes in page zero

Ne e WMo ws WE we W e ws We Ne N

;EQUATES
AY1PTR: .EQU O0DOH ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ;PAGE ZERO FOR ARRAY 2 POINTER
MPDMUL:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;:GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

+RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

SED ; PUT PROCESSOR IN DECIMAL MODE

LDY #0

LDX LENGTH ;1S LENGTH ZERO ?

BNE INITLP

JMP EXIT ;YES, EXIT

:MOVE ARRAY 1 TO MULTIPLICAND ARRAY, 2ZERO ARRAY 1, AND
; ZERO PRODUCT ARRAY.
INITLP:
LDA (AY1PTR) ,Y
STA MCAND, Y ;MOVE ARY1[Y] TO MCAND[Y]

. wE me Ne ws e W W We N6 “e

LOOP:

DLOOP:

DLOOP1:

ADDLP:

INNER:

DECND:

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL)

LDA 0

STA (AY1PTR), Y ;ZERC ARY1[Y]

STA PROD, Y ;ZERO PROD

INY

DEX ;DECREMENT LOOP COUNTER
BNE INITLP ;CONTINUE UNTIL DONE

s INITIALIZE CURRENT INDEX TO ZERO

LDA $0 -

STA 1DX

i
; LOOP THROUGH ALL THE BYTES OF THE MULTIPLICAND

LDA #0
STA DCNT ;START WITH LOW DIGIT

; LOOP THROUGH 2 DIGITS PER BYTE
i DURING THE FIRST DIGIT DCNT = 0
i DURING THE SECOND DIGIT DCNT = FF HEX (-1)

LDA #0

STA OVRFLW 7iZERO QOVERFLOW

LDY IDX

LDA MCAND, Y ;GET NEXT BYTE

LDX DCNT

BPL DLOOP1 ;BRANCH IF FIRST DIGIT
LSR A ;SHIFT RIGHT 4 BITS
LSR A

LSR A

LSR A

AND #0FH ;AND OFF UPPER DIGIT
BEQ SDIGIT ;BRANCH IF NEXT DIGIT IS ZERO
STA NDIGIT :SAVE

;ADD MULTIPLIER TO PRODUCT NDIGIT TIMES

LDY $#0 ;Y = INDEX INTO ARRAYS

LDX LENGTH iX = LENGTH IN BYTES

CLC ;CLEAR CARRY INITIALY

LDA (AY2PTR) ,Y ;GET NEXT BYTE

ADC PROD, Y ;ADD TO PRODUCT

STA PROD, Y +STORE ‘

INY ;s INCREMENT ARRAY INDEX

DEX i DECREMENT LOOP COUNTER

BNE INNER ;CONTINUE UNTIL LOOP COUNTER = 0
BCC DECND #BRANCH IF NO OVERFLOW FROM ADDITION
INC OVRFLW i {ELSE INCREMENT OVERFLOW BYTE
DEC NDIGIT

BNE ADDLP ;CONTINUE UNTIL NDIGIT = 0

293

294 ARiTHMETIC

;STORE THE LEAST SIGNIFICANT DIGIT OF PRODUCT
; AS THE NEXT DIGIT OF ARRAY 1

SDIGIT:
‘ LDA PROD
AND #0FRH ;CLEAR UPPER DIGIT
LDX DCNT
BPL sSD1l ;BRANCH IF FIRST DIGIT
ASL A ;ELSE SHIFT LEFT 4 BITS TO PLACE
ASL A ; IN THE UPPER DIGIT
ASL A
ASL A
SD1:
LDY IDX ;GET CURRENT BYTE INDEX
ORA (AY1PTR) ,Y ;OR IN NEXT DIGIT
STA (AY1PTR) ,Y ;STORE NEW VALUE
;SHIFT RIGHT PRODUCT 1 DIGIT (4 BITS)
LDY LENGTH . ;SHIFT RIGHT FROM THE FAR END
SHFTLP: ' .
DEY ;DECREMENT Y SO IT POINTS AT THE NEXT BYTE
LDA PROD, Y
PHA ;SAVE LOW DIGIT OF PROD, Y
AND $0FOH ;CLEAR LOW DIGIT

;MAKE LOW DIGIT OF OVERFLOW = HIGH DIGIT OF PROD,Y
;MAKE HIGH DIGIT OF PROD,Y = LOW DIGIT OF PROD,Y

LSR OVRFLW ;SHIFT OVERFLOW RIGHT
ORA OVRFLW ;BIT 0..2 AND CARRY = OVERFLOW
_ ;BITS 4.,7 = PROD
ROR A
ROR A
ROR A
ROR A ;NOW PROD IN BITS 0..3 AND OVERFLOW IN 4..7
STA PROD, ¥ ;STORE NEW PRODUCT '
PLA ;GET OLD PROD,Y
AND $O0FH ;CLEAR UPPER DIGIT
STA OVRFLW ;STORE IN OVERFLOW
TYA : ;CHECK FOR Y = 0
BNE SHFTLP ;BRANCH IF NOT DONE
;CHECK IF WE ARE DONE WITH BOTH DIGITS OF THIS BYTE
DEC ' DCNT ;MAKE 0 GOTO FF HEX TO INDICATE SECOND DIGIT
LDA DCNT - : _
CMP $0FFH ;HAVE WE ALREADY DONE BOTH DIGITS ?
BEQ DLOOP ;BRANCH IF NOT.
; INCREMENT TO NEXT BYTE AND SEE IF WE ARE DONE
INC IDX :
LDA IDX
CMP LENGTH
BCS EXIT ;BRANCH IF BYTE INDEX >= LENGTH
JMP LOOP ;ELSE CONTINUE

EXIT:

’

; DATA
RETADR:
LENGTH:
NDIGIT:
DCNT:
IDX:
OVRFLW:
PROD:
MCAND:

Ne e we we wa

SC0613:

SZAYS:

AY1ADR:
AY2ADR:

AY1l:

CLD
RTS

.BLOCK 2
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 1
.BLOCK 255
.BLOCK 255

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA

LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
.WORD

.BYTE
.BYTE
.BYTE
.BYTE

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDMUL

SC0613
;

AYl
AY2

034H
012H

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL)

sRETURN IN BINARY MODE

; TEMPORARY FOR RETURN ADDRESS
;LENGTH OF ARRAYS

;NEXT DIGIT IN ARRAY

;DIGIT COUNTER FOR BYTES IN ARRAYS
iBYTE INDEX INTO ARRAYS

;OVERFLOW BYTE

: PRODUCT BUFFER

sMULTIPLICAND BUFFER

;PUSH AY]l ADDRESS

;PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS
iMULTIPLE~PRECISION BCD MULTIPLICATION
{RESULT OF 1234 * 1234 = 1522756

; IN MEMORY AY1 = 56H
; " AY1+l = 27H
; AY1+2 = 524
; AY1+3 = 0lH
; AY1+4 = 0OH
; AY1+5 = QOH
: AY1+6 = 0OH

;LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

295

e we we we we

296 ARTHMETIC

. BYTE
.BYTE
.BYTE

AY2:
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

oo

; PROGRAM

Multiple-Precision Decimal Division

(MPDDIV)

6N

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their
least significant byte at the lowest address.
The quotient replaces the dividend (the
operand with the starting address lower in the
stack). The length of the numbers (in bytes)
is 255 or less. The remainder is not returned
but the address of its least significant byte is
available starting at memory location
HDEPTR. The Carry flag is cleared if no
errors occur,; if a divide by zero is attempted,
the Carry flag is set to 1, the dividend is left
unchanged, and the remainder is set to zero.

The program returns with the Decimal Mode
(D) flag cleared (binary mode).

Procedure: The program performs division
by trial subtractions, a digit at a time. It deter-
mines how many times the divisor can be
subtracted from the dividend and then saves
that number in the quotient and makes the
remainder into the new dividend. It then
rotates the dividend and the quotient left one
digit. The program exits immediately, setting
the Carry flag, if it finds the divisor to be
zero. The Carry flag is cleared otherwise.

Registers Used: All

Execution Time: Depends on the length of the
operands and on the size of the digits in the quo-
tient (determining how many trial subtractions
must be performed). If the average digit in the
quotient has a value of 5, then the execution time
is approximately

440 X LENGTH? + 765 x LENGTH + 228

cycles where LENGTH is the number of bytes in
the operands. If, for example, LENGTH = 6 (12
digits), the approximate execution time is

440 X 62 + 765 X 6 + 228 = 440 X 36 + 4590
+ 228 = 15,840 + 4818 = 20,658 cycles.

Program Size: 246 bytes

Data Memory Required: 522 bytes anywhere in
RAM plus eight bytes on page 0. The 522 bytes
anywhere in RAM are temporary storage for the
high dividend (255 bytes starting at address
HIDE1), the result of the trial subtraction (255
bytes starting at address HIDE2), the return
address (two bytes starting at address
RETADR), a pointer to the dividend (two bytes
starting at address AY1PTR), the length of the

operands (one byte at address LENGTH), the
next digit in the array (one byte at address
NDIGIT), the divide loop counter (one byte at
address COUNT), and the addresses of the high
dividend buffers (two bytes each, starting at
addresses AHIDE]1 and AHIDE2). The eight
bytes on page 0 hold pointers to the divisor
(address AY2PTR, 00DO,¢ in the listing), the
current high dividend and remainder (address
HDEPTR, 00D2¢ in the listing), the other high
dividend (address ODEPTR, 00D4; in the list-
ing), and the temporary array used in the left
rotation (address RLPTR, 00D6,, in the listing).

Special Cases:

1. A length of zero causes an immediate exit
with the Carry flag cleared, the quotient equal to
the original dividend (array 1 unchanged), the
remainder undefined, and the Decimal Mode flag
cleared (binary mode).

2. A divisor of zero causes an exit with the
Carry flag set to 1, the quotient equal to the origi-
nal dividend (array 1 unchanged), the remainder
equal to zero, and the Decimal Mode flag cleared
(binary mode).

297

298 ArTHMETIC

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of
divisor (address containing the least sig-

nificant byte of array 2)

More significant byte of starting address of
divisor (address containing the least sig-

nificant byte of array 2)

Less significant byte of starting address of
dividend (address containing the least sig-

nificant byte of array 1)

More significant byte of starting address of
dividend (address containing the least sig-

nificant byte of array 1)

Exit Conditions

Dividend (array 1) replaced by dividend
(array 1) divided by divisor (array 2)

If the divisor is non-zero, Carry = 0 and
the result is normal.

If the divisor is zero, Carry = 1, the divi-
dend is unchanged, and the remainder is
zero.

The remainder is available with its least
significant digits stored at the address in
HDEPTR and HDEPTR+1

D flag set to zero (binary mode).

Example

Data:

Length of operands (in bytes) = 04

Top operand (array 2 or divisor) = .
00006294,

Bottom operand (array 1 or dividend) =

22142298,

Result: Bottom operand (array 1) = Bottom
operand (array 1)/Top operand
(array 2) = 000035184

Remainder (starting at address in
HDEPTR and HDEPTR+1) =
00000006, = 6,

Decimal Mode flag = 0 (binary mode)
Carry flag is 0 to indicate no

divide by zero error.

Title
Name:

e we we wms

Purpose:

Entry:

Exit:

Time:

Size:

NE e NE NG NE MO e NE W Ne NE N N WE WE MO e NE N ME We Ne W W NE N NE me N6 we Ne e We we e Ne we we we

;EQUATES

AY2PTR: .EQU
HDEPTR: .EQU
ODEPTR: .EQU
RLPTR: .EQU

MPDDIV:

Registers used:

0DOH
OD2H

0D4H

0D6H

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPODIV) 299

Multiple-Precision Decimal Division
MPDDIV

Divide 2 arrays of BCD bytes
Arrayl := Arrayl / Array?2

TOP OF STACK
Low byte of return address,
High byte of return address,
Length of the arrays in bytes,
Low byte of array 2 (divisor) address,
High byte of array 2 (divisor) address,
Low byte of array 1 (dividend) address,
High byte of array 1 (dividend) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY [0] is the
least significant byte, and ARRAY [LENGTH-1]
the most significant byte.

Arrayl := Arrayl / Array2
Dvbuf := remainder
If no errors then
carry := 0
ELSE
divide by 0 error
carry :=1
ARRAY 1 := un
remainder :=

All

Assuming the average digit value in the
quotient is 5 then the time is approximately
(440 * length™2) + (765 * length) + 228 cycles

Program 246 bytes
Data 522 bytes plus
8 bytes in page zero

iPAGE ZERO FOR ARRAY 2 (DIVISOR) POINTER

:PAGE ZERO WHICH POINTS TO THE CURRENT
;7 HIGH DIVIDEND POINTER

iPAGE ZERO WHICH POINTS TO THE OTHER

;i HIGH DIVIDEND POINTER

i PAGE ZERO' FOR ROTATE LEFT ARRAY

e ws we we

~. Nu e we we we

Ne ne e e o e e we

| Ne N NE Na ME N4 M we NE NE N e e Me N6 we Ne e We N %6 w6 we we

300 AariTHMETIC

:GET RETURN ADDRESS

PLA -

STA RETADR

PLA

STA RETADR+1

:GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET STARTING ADDRESS OF DIVISOR

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF DIVIDEND

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA - RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

CLD ; PUT PROCESSOR INTO BINARY MODE

sCHECK FOR ZERO LENGTH ARRAYS

LDA LENGTH

BNE INIT ;BRANCH IF NOT ZERO

JMP OKEXIT ;ELSE EXIT

;2ERO BOTH DIVIDEND BUFFERS
INIT:

LDA #0 ;A =0

LDY LENGTH :+X = LENGTH
INITLP:

STA HIDEl-1l,Y

STA HIDE2-1,Y

DEY

BNE INITLP

;SET UP THE HIGH DIVIDEND POINTERS

LDA AHIDE1l

STA HDEPTR

LDA AHIDEl+1

STA HDEPTR+1

LDA AHIDE2

STA ODEPTR

LDA AHIDE2+1

STA ODEPTR+1

CHKDVO:

DVO1l:

DVLOOP:

ROLDVB:

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 301

;NDIGIT := 0 -

LDA #0

STA NDIGIT

;SET COUNT TO NUMBER OF DIGITS PLUS 1

; COUNT := (LENGTH * 2) + 1

LDA LENGTH _

ASL A ;LENGTH * 2

STA COUNT ~ .
LDA #0

ROL A iMOVE OVERFLOW FROM * 2 INTO A
STA COUNT+1 ;STORE HIGH BYTE OF COUNT

INC COUNT

BNE CHKDV0 ' ;BRANCH IF NO OVERFLOW

INC COUNT+1

;CHECK FOR DIVIDE BY ZERO

LDX - LENGTH

LDY #0

TYA

ORA (AY2PTR), Y

INY

DEX

BNE DvVol ;CONTINUE ORING ALL THE BYTES
CMP #0

BNE DVLOOP sBRANCH IF DIVISOR IS NOT 0
JMP " EREXIT ;ERROR EXIT

;PERFORM DIVISION BY TRIAL SUBTRACTIONS

;ROTATE LEFT THE LOWER DIVIDEND AND THE QUOTIENT (ARRAY 1)

; THE HIGH DIGIT OF NDIGIT BECOMES THE LEAST SIGNIFICANT DIGIT
i OF THE QUOTIENT (ARRAY 1) AND THE MOST SIGNIFICANT DIGIT

; OF ARRAY 1 (DIVIDEND) GOES TO THE HIGH DIGIT OF NDIGIT

LDA AY1PTR+1 . ’

LDY AY1PTR .

JSR RLARY sROTATE ARRAY 1

:IF COUNT = 0 THEN WE ARE DONE

DEC COUNT

BNE ROLDVB iBRANCH IF LOWER BYTE IS NOT 0
LDA COUNT+1 ;ELSE GET HIGH BYTE

BEQ OKEXIT jCONTINUE UNTIL COUNT = 0

DEC COUNT+1 ;DECREMENT UPPER BYTE OF COUNT

i ROTATE LEFT THE HIGH DIVIDEND WHERE THE LEAST SIGNIFICANT DIGI
i OF HIGH DIVIDEND BECOMES THE HIGH DIGIT OF NDIGIT '

LDA HDEPTR+1
LDY HDEPTR
JSR RLARY

302 ArTHMETIC

SUBLP:

INNER:

OKEXIT:

EREXIT:

EXIT:

SEE HOW MANY TIMES THE DIVISOR WILL GO INTO THE HIGH DIVIDEND
WHEN WE EXIT FROM THIS LOOP THE HIGH DIGIT OF NDIGIT IS THE NEXT
; QUOTIENT DIGIT AND HIGH DIVIDEND IS THE REMAINDER

* e we

LDA #0

STA NDIGIT ;NDIGIT := 0

SED ;ENTER DECIMAL MODE

LDY* #0 i ;Y = INDEX INTO ARRAYS

LDX LENGTH ;X = LENGTH

SEC ;SET INVERTED BORROW

LDA (HDEPTR) , Y ;GET NEXT BYTE OF DIVIDEND

SBC (AY2PTR) ,Y ;SUBTRACT BYTE OF DIVISOR

STA (ODEPTR) , ¥ ;SAVE DIFFERENCE FOR NEXT SUBTRACTION
INY ; INCREMENT ARRAY INDEX /

DEX ;DECREMENT LOOP COUNTER

BNE INNER ;CONTINUE THROUGH ALL THE BYTES

BCC DVLOOP ;BRANCH WHEN BORROW OCCURS. AT WHICH TIME

; NDIGIT IS THE NUMBER OF TIMES THE DIVISOR
; GOES INTO THE ORIGINAL HIGH DIVIDEND AND
;» HIGH DIVIDEND CONTAINS THE REMAINDER.’

; INCREMENT NEXT DIGIT WHICH IS IN THE HIGH DIGIT OF NDIGIT
LDA NDIGIT o

CLC -

ADC #10H

STA NDIGIT

EXCHANGE POINTERS, THUS MAKING REMAINDER THE NEW DIVIDEND
LDX ° HDEPTR :

LDY HDEPTR+1

LDA ODEPTR

STA HDEPTR

LDA ODEPTR+1

STA HDEPTR+1

STX ODEPTR .

STY ODEPTR+1

JMP SUBLP ;CONTINUE UNTIL DIFFERENCE GOES NEGATIVE

;NO ERRORS, CLEAR CARRY

CLC
BCC EXIT

;DIVIDE BY ZERO ERROR, SET CARRY

SEC

;HDEPTR CONTAINS THE ADDRESS OF THE REMAINDER ‘
CLD ' ;RETURN IN BINARY MODE
RTS

6N MULTIPLE-PRECISION DECIMAL DIVISION (vpoD) 303

H .
; ***********************************

iSUBROUTINE: RLARY

i PURPOSE: ,ROTATE LEFT AN ARRAY ONE DIGIT (4 BITS)

FENTRY: A = HIGH BYTE OF ARRAY ADDRESS '

Y = LOW BYTE OF ARRAY ADDRESS

THE HIGH DIGIT OF NDIGIT IS THE DIGIT TO ROTATE THROUGH
;EXIT: ARRAY ROTATED LEFT THROUGH THE HIGH DIGIT OF NDIGIT

:REGISTERS USED: ALL
PRERR AR AR R KRR R IR AR KRR IR AR AR KRR

~ ~,

RLARY:

:STORE ARRAY ADDRESS

sta RLPTR+1 .

STY RLPTR -

sSHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND

; SHIFT ARRAY LEFT

LDX LENGTH

LDY #0 ;START AT ARY1([0]
SHIFT:

LDA (RLPTR) ,Y ;GET NEXT BYTE

PHA ;SAVE HIGH DIGIT

AND #0FH ;CLEAR HIGH DIGIT

ASL NDIGIT

ORA NDIGIT ;BITS 0..3 = LOW DIGIT OF ARRAY

‘ ;BITS 5..7 AND CARRY = NEXT DIGIT

ROL A

ROL A

ROL A

ROL A ;NOW NDIGIT IN BITS 0..3 AND

: ; LOW DIGIT IN HIGH DIGIT

STA (RLPTR) ,Y sSTORE IT

PLA) ;GET OLD HIGH DIGIT

AND $#0F OH ;CLEAR LOWER DIGIT

STA NDIGIT ;STORE IN NDIGIT

INY ; INCREMENT TO NEXT BYTE

DEX . ;DECREMENT COUNT

BNE SHIFT ;BRANCH IF NOT DONE

RTS
;DATA ,
RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS
AY1PTR: .BLOCK 2 ;ARRAY 1 ADDRESS
LENGTH: * .BLOCK 1 ;LENGTH OF ARRAYS
NDIGIT: .BLOCK 1 ;NEXT DIGIT IN ARRAY
COUNT: .BLOCK 2 ;DIVIDE LOOP COUNTER .
AHIDEl: .WORD HIDEl. ;ADDRESS OF HIGH DIVIDEND BUFFER 1
AHIDE2: .WORD HIDE2 ;ADDRESS OF HIGH DIVIDEND BUFFER 2
HIDEl: .BLOCK 255, ;HIGH DIVIDEND BUFFER 1

HIDE2: .BLOCK 255, ;HIGH DIVIDEND BUFFER 2

304 ArTHMETIC

= ws we we we

SC0614:

SZAYS:

AY1ADR:
AY2ADR:

AY1:

AY2:

SAMPLE EXECUTION:

LDA
PHA
LDA
PHA

LDA
PHA
LDA
PHA

LDA
PHA
JSR
BRK

JMP
. EQU

.WORD
.WORD

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

.END

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#S2AYS

MPDDIV

SC0614
7

AY1l
AY2

056H
027H
052H
OlH

034H
012H

[N =R} =]

: PROGRAM

;PUSH AY1l ADDRESS

;PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS
;MULTIPLE-PRECISION BCD DIVISION
;RESULT OF 1522756 / 1234 = 1234

IN MEMORY AYl
AY1l+l
AY1+2
AY1+3
AY1l+4
AY1+5
AY1+6

e e we wa w we e

:LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1
;ADDRESS OF ARRAY 2

34H
128
00H
00H
00H
00H
00H

o unun

(DIVIDEND)
(DIVISOR)

-~ we w6 we ws

Multiple-Precision Decimal Comparison 60

Compares two multi-byte unsigned
decimal (BCD) numbers and sets the Carry
and Zero flags appropriately. The Zero flag is
set to 1 if the operands are equal and to 0 if
they are not equal. The Carry flag is set to 0 if

the operand with the address higher in the

stack (the subtrahend) is larger then the
other operand (the minuend); the Carry flag
is set to 1 otherwise. Thus the flags are set as

if the subtrahend had been subtracted from
the minuend.

Note: This program is exactly the same as
Subroutine 6J, the multiple-precision binary
comparison, since the CMP instruction oper-
ates the same in the decimal mode as in the
binary mode. Hence, see Subroutine 6J for a
listing and other details.

Examples

1. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
456780153266,)

Result: Zero flag = 0 (operands are not equal)
Carry flag = 1 (subtrahend is not
larger than minuend)

2. Data; Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
196528719340,
Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is not
larger than minuend)

3. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =
196528719340,

Bottom operand (minuend) =
073785991074,

Result: Zero flag = 0 (operands are not equal)

Carry flag = 0 (subtrahend is larger
than minuend)

305

Bit Set (BITSET)

7A

Sets a specified bit in a 16-bit word to 1.

Procedure: The program uses bits 0
through 2 of register X to determine which
bit position to set and bit 3 to select a particu-
lar byte of the original word-length data. It
then logically ORs the selected byte with a
mask containing a 1 in the chosen bit position
and Os elsewhere. The masks with one 1 bit
are available in a table.

Registers Used: All
Execution Time: 57 cycles
Program Size: 42 bytes

Data Memory Required: Two bytes anywhere in
RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be
interpreted mod 16. That is, for example, bit
position 16 is equivalent to bit position 0.

Entry Conditions

More significant byte of data in accumulator
Less significant byte of data in register Y
Bit number to set in register X

Exit Conditions

More significant byte of result in accumulator
Less significant byte of result in register Y

Examples

(A) = 6E¢ = 01101110,
(more significant byte)
(less significant byte)
(X) = 0C|6 = 1210

(bit position to set)

1. Data:

Result: (A) = 7TE;4 = 01111110,

(more significant byte,
bit 12 set to 1)

(Y) = 39,, = 00111001,
(less significant byte)

306

2. Data: (A) = 6, = 01101110,
(more significant byte)
(Y) = 39, = 00111001,
(less significant byte)
(x) = 0216 = 210

(bit position to set)

Result: (A) = 6E,, = 01101110,

(more significant byte)
(Y) = 3D, = 00111101,
(less significant byte, bit 2 set to 1)

7a@iTseT BT seT 307

; Title Bit set ;
; Name: BITSET ;
; : H
; H
Purpose: Set a bit in a 16 bit word.
Entry: Register A = High byte of word
Register Y = Low byte of word
Register X = Bit number to set
Exit: Register A = High byte of word with bit set
Register Y = Low byte of word with bit set

Registers used: All

e e we Me W Ne e W ME N we SE W N e we we we
Mo Me ME me W Ne Me N Wa mp e e me me we we we we

Time: 57 cycles
Size: Program 42 bytes
Data 2 bytes
BITSET:
;SAVE THE DATA WORD
STA VALUE+1
STY VALUE
;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15
TXA
AND #0FH
;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE
TAX SAVE BIT NUMBER IN X
AND $#07H ;THE LOWER 3 BITS OF THE BIT NUMBER
TAY ; IS THE BIT IN THE BYTE, SAVE IN Y
TXA sRESTORE BIT NUMBER
LSR A ;DIVIDE BY 8 TO DETERMINE BYTE
LSR A
LSR A
TAX iSAVE BYTE NUMBER (0 OR 1) IN X
sSET THE BIT
LDA VALUE, X +GET THE BYTE
ORA BITMSK,Y ;SET THE BIT
STA VALUE, X

:RETURN THE RESULT IN REGISTERS A AND Y

LDA - VALUE+1
LDY VALUE
RTS

308 T MANIPULATIONS AND SHIFTS

BITMSK: .BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE

;DATA

00000001B
00000010B
00000100B
000010008
00010000B
001000008
01000000B
100000008

VALUE: .BLOCK 2

~e we wo e W

SCG701:
LDA
LDY
LDX
JSR
BRK

JMP

SAMPLE EXECUTION

VAL+1
VAL
BITN
BITSET

SC0701

;BIT 0 =1
;BIT 1 =1
sBIT 2 =1
sBIT 3 =1
;BIT 4 = 1
;BIT 5 =1
;BIT 6 = 1
:BIT 7 =1

; TEMPORARY FOR THE DATA WORD

e s we e we

;LOAD DATA WORD INTO A,Y

;GET BIT NUMBER IN X

;+SET THE BIT

;RESULT OF VAL = 5555H AND BITN = OF
; REGISTER A = D5H, REGISTER ¥ = 55H

;TEST DATA, CHANGE FOR DIFFERENT VALUES

VAL: .WORD
BITN: .BYTE

.END

5555H
UFH

; PROGRAM

Bit Clear (BITCLR) 7B

Clearsa specified bit in a 16-bit word.

Procedure: the program uses bits 0 through
2 of register X to determine which bit posi-
tion to clear and bit 3 to select a particular Program Size: 42 bytes
byte of the original word-length data. It then Data Memory Required: T\j"Olj’é‘e; anywhere in
logically ANDs the selected byte with a mask RAM‘ (starting at.addre'ss ALUE).)
containing a 0 in the choseq bit positior} and. ?n‘;gf;‘;gtf: s:,:odBnl5?0;2::niss,a?:rveex:a§n;g,l l?i?
1s elsewhere. The masks with one 0 bit are position 16 is equivalent to bit position 0.
available in a table.

Registers Used: All
Execution Time: 57 cycles *

Entry Conditions Exit Conditions

More significant byte of data in accumulator More significant byte of result in accumulator
Less significant byte of data in register Y Less significant byte of result in register Y
Bit number to clear in register X

Examples .
. Data: (A) = 6E, = 01101110, 2. Data: (A) = 6E;q = 01101110,
(more significant byte) (more significant byte)
(Y) =39, = 00111001 (Y) = 39, = 00111001,
(less significant byte) . (less significant byte)
(X) = 0El6 = 14]0 ° ’ (X) = 0416 = 410
(bit position to clear) (bit position to clear)
Result: (A) = 2E|¢ = 01101110, Result: (A) = 6E; = 01101110,
(more significant byte, bit 14 cleared) (more significant byte)
(Y) = 39,, = 00111001, (Y) = 29, = 00101001,
(less significant byte) (less significant byte, bit 4 cleared)

309

31 0 BIT MANIPULATIONS AND SHIFTS

~e we wo ws mE Ne N6 me Ne Wm we We We e We We W No

BITCLR:

Title
Name:

Purpose:’

Entry:

Exit:

Registers used:

Time:

Size:

Bit clear
BITCLR

l\(~s we we

Clear a bit in a 16 bit word.

Register A
Register Y
Register X

High byte of word
Low byte of word
Bit number to clear

i

Ne we ne we we me NS Ne we we e me we S8 S we e N

High byte of word with bit cleared

Register A =

Register Y = Low byte of word with bit cleared
All

57 cycles

Program 42 bytes
Data 2 bytes

;SAVE THE DATA WORD

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

STA VALUE+1
STY VALUE
TXA

AND #0FH
TAX

AND #07H
TAY

TXA

LSR A

LSR A

LSR A

TAX

;CLEAR THE BIT
LDA VALUE, X
AND BITMSK,Y
STA VALUE, X

;RETURN THE RESU

LDA VALUE+1
LDY VALUE
RTS

:SAVE BIT NUMBER IN X

;THE LOWER 3 BITS OF THE BIT NUMBER
; IS THE BIT IN THE BYTE, SAVE IN Y
;sRESTCRE BIT NUMBER :

;DIVIDE BY 8 TO DETERMINE BYTE

;SAVE BYTE NUMBER (0 OR 1) IN X

;GET THE BYTE
;CLEAR THE BIT °

LT IN REGISTERS A AND Y

78 BITCLRIBITCLEAR 311

BITMSK: .BYTE 111111108 ;BIT 0 = 0

.BYTE 11111101B BIT 1 = 0

.BYTE 11111011B ;BIT 2 = 0

.BYTE 11110111B :BIT 3 = 0

.BYTE 11101111B :BIT 4 = 0

.BYTE 11011111B ;BIT 5 = 0

.BYTE 10111111B ;BIT 6 = 0

.BYTE 011111118 ;BIT 7 = 0
; DATA A }
VALUE: .BLOCK 2 ;TEMPORARY FOR THE DATA WORD
;- ! H
; o ;
; SAMPLE EXECUTION ;
; H
H H
sco702:)

LDA VAL+1 ;LOAD DATA WORD INTO A,Y

LDY VAL

LDX BITN ;GET BIT NUMBER IN X

JSR BITCLR ;CLEAR THE BIT ,

BRK . ;RESULT OF VAL = 55558 AND BITN = OOH IS

; REGISTER A = 55H, REGISTER Y = 54H

JMP $C0702
;TEST DATA, CHANGE FOR DIFFERENT VALUES
VAL: .WORD 5555H
BITN: .BYTE 0

.END ; PROGRAM

Bit Test (BITTST)

7C

Sets the Carry flag to the value of a
specified bit in a 16-bit word.

Procedure: The program uses bits 0
through 2 of register X to determine which
bit position to test and bit 3 to select a partic-
ular byte of the original word-length data. It
then logically ANDs the selected byte with a
mask containing a 1 in the chosen bit position
and Os elsewhere. Since the result is zero if
the tested bit is 0 and non-zero if the tested
bit is 1, the Zero flag is set to the complement
of the tested bit. Finally, the program sets the

Regisfers Used: All
Execution Time: Approximately 50 cycles
Program Size: 37 bytes

Data Memory Required: Two bytes anywhere in
RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be
interpreted mod 16. That is, for example, bit
position 16 is equivalent to bit position 0.

Carry flag to the complement of the Zero
flag, thus making it the same as the tested bit
through a double inversion.

Entry Conditions

More significant byte of data in accumulator
Less significant byte of data in register Y

Bit position to test in register X

Exit Conditions

Carry set to value of specified bit position in
data.

Examples

(A) = 6E, = 01101110,
(more significant byte)
(Y) = 39, = 00111001,
(less significant byte)
(X) = 0By = 119

(bit position to test)

1. Data:

Result: Carry = 1 (value of bit 11)

312

2. Data:
(A) = 6E, = 01101110,
(more significant byte)
(Y) = 39,5 = 00111001,
(less significant byte)
(X) = 06l6 = 610
(bit position to test)

Result: Carry = 0 (value of bit 6)

- e we we

NE NE ME Ne ME Ne e N We N me e NE e we we e

BITTST:

EXIT:

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Bit test
BITTST

Test.a bit in a 16 bit word.

Register A = High byte of word
Register Y = Low byte of word
Register X = Bit number to test

CARRY = value of the tested bit
All
Approximately 50 cycles

Program 37 bytes
Data 2 bytes

;SAVE THE DATA WORD

STA
STY

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

TXA
AND

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

TAX
AND
TAY
TXA
LSR
LSR
LSR
TAX

VALUE+1
VALUE

#0FH
#0780

A
A
A

;SAVE BIT NUMBER IN X

7c@rTsT BT TesT 313

~e i e wo

We ME e e e N N Ne wE me Ne we e we %o we we

;THE LOWER 3 BITS OF THE BIT NUMBER
;i IS THE BIT IN THE BYTE, SAVE IN Y

;RESTORE BIT NUMBER

;DIVIDE BY 8 TO DETERMINE BYTE

;SAVE BYTE NUMBER (0 OR

;SET THE ZERO FLAG TO THE COMPLEMENT OF THE BIT

LDA
AND

VALUE, X
BITMSK,Y

;GET THE BYTE
;GET THE BIT

1) IN X

:IF THE BIT 1S 0 REGISTER A IS 0 AND Z IS 1

;ELSE REGISTER A IS NOT

0 AND Z IS O

;SET THE CARRY FLAG TO THE COMPLEMENT OF THE ZERO FLAG

CLC
BNE
SEC

RTS

EXIT

;ASSUME THE BIT IS 0
;BRANCH IF THE BIT IS 0
;ELSE THE BIT WAS 1

314 T MANIPULATIONS AND SHIFTS

BITMSK: .BYTE 00000001B ;BIT 0 =1
.BYTE 00000010B ;BIT 1 =1
.BYTE 00000100B sBIT 2 =1
.BYTE 00001000B . ;BIT 3 =1
.BYTE 000100008 ;BIT 4 =1
.BYTE 001000008 ;BIT 5 =1
.BYTE 01000000B sBIT 6 = 1
.BYTE 10000000B ;BIT 7 =1
;DATA
VALUE: .BLOCK 2 :TEMPORARY FOR THE DATA WORD
H
; SAMPLE EXECUTION
’
SC0703: .
LDA VAL+1 ; LOAD DATA WORD INTO A,Y
LDY VAL
LDX BITN ;GET BIT NUMBER IN X
JSR BITTST ;TEST THE BIT
BRK . ;RESULT OF VAL = 5555H AND BITN = 01 IS
;CARRY = 0
JMP $C0703
;sTEST DATA, CHANGE FOR DIFFERENT VALUES
VAL: .WORD 5555H ‘ :
BITN: .BYTE 01H

.END ; PROGRAM

~e we e wo we

Bit Field Extraction (BFE)

7D

Extracts a field of bits from a word and
returns the field in the least significant bit
positions. The width of the field and its start-
ing bit position are specified.

Procedure: The program obtains a mask
with the specified number of 1 bits from a

tabie, shifts the mask left to align it with the
specified starting bit position, and obtains the
field by logically ANDing the mask and the
data. It then normalizes the bit field by shift-
ing it right so that it starts in bit 0.

Registers Used: All

Execution Time: 34 » STARTING BIT POSI-
TION plus 138 cycles overhead. The starting bit
position determines the number of times the
mask must be shifted left and the bit field right.
For example, if the field starts in bit 6, the execu-
tion time is
34«6 + 138 = 204 + 138 = 342 cycles

Program Size: 134 bytes

Data Memory Required: Six bytes anywhere in
RAM for the index (one byte at address
INDEX), the width of the field (one byte at
address WIDTH), the data value (two bytes start-

ing at address VALUE), and the mask (two bytes
starting at address MASK).

Special Cases:

1. Requesting a field that would extend
beyond the end of the word causes the program
to return with only the bits through bit 15. That
is, no wraparound is provided. If, for example,
the user asks for a 10-bit field starting at bit 8, the
program will return only 8 bits (bits 8 through 15).

2. Both the starting bit position and the num-
ber of bits in the field are interpreted mod 16.
That is, for example, bit position 17 is equivalent
to bit position 1 and a field of 20 bits is equivalent
to a field of 4 bits.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Starting (lowest) bit position of field
Number of bits in the field

Less significant byte of data value
More significant byte of data value

Exit Conditions

More significant byte of bit field in
accumulator

Less significant byte of bit field in register Y

Examples

Value = F67C ¢ = 1111011001111100,
Starting bit position = 4
Number of bits in the field = 8

1. Data:

Result: Bit field = 0067, = 0000000001100111,
We have extracted 8 bits from the original
data, starting with bit 4 (that is, bits

4 through 11).

315

316 &iT MANIPULATIONS AND SHIFTS

2. Data: Value = A2D4,, = 1010001011010100, Result: Bit field = 000B,, = 0000000000001011,
Starting bit position = 6 We have extracted S bits from the
Number of bits in the field = § original data, starting with bit 6 (that is,

bits 6 through 10).

Title Bit Field Extraction

H ;
; Name: BFE :
H H
i ;

Purpose: Extract a field of bits from a 16 bit word and
. return the field normalized to bit 0.
NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN
ONLY THE BITS THROUGH BIT 15 WILL BE
RETURNED. FOR EXAMPLE IF A 4 BIT FIELD IS
REQUESTED STARTING AT BIT 15 THEN ONLY 1
BIT (BIT 15) WILL BE RETURNED.

Entry: TOP OF STACK
Low\byte of return address,
High byte of return address,
Starting (lowest) bit position in the field
(0..15),
Number of bits in the field (l1..16),
Low byte of data word,
High byte of data word,

Exit: Register A = High byte of field
) Register Y = Low byte of field

Registers used: All

Time: 138 cycles overhead plus
(34 * starting bit position) cycles

Size: Program 134 bytes
Data 6 bytes

o %o %8 %o We W W6 we WO wo W We We We WS W8 WO Np e Ve WS W W w4 W We W we o we
Ne e w6 s WA we We Ws W Mo ME WE WE W4 VO w3 W NE Wy Wa W W N6 W2 Ne We N we W W

BFE:

;SAVE RETURN ADDRESS IN Y,X
PLA
TAY
PLA
TAX

SHFTLP:

GETFLD:

7D (BFE) BIT FIELD EXTRACTION 317

;GET THE STARTING BIT POSITION OF THE FIELD

PLA
AND
STA

;GET THE NUMBER OF BITS

PLA
SEC
SBC
AND
STA

;GET THE DATA WORD

PLA
STA
PLA
STA

#0FH
INDEX

#1
#0FH
WIDTH

VALUE

VALUE+1

;MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15
sSAVE INDEX

IN THE FIELD (MAP FROM 1..WIDTH TO 0..WIDTH-1)
;SUBTRACT 1

;MAKE SURE IT IS 0 TO 15
;SAVE WIDTH

;RESTORE THE RETURN ADDRESS

TXA
PHA
TYA
PHA

;CONSTRUCT THE MASK

; INDEX INTO THE MASK ARRAY USING THE WIDTH PARAMETER

LDA
ASL
TAY
LDA
STA
INY
LDA
STA

WIDTH
A

MSKARY, Y

MASK

MSKARY, Y

MASK+1

;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

;SHIFT MASK LEFT INDEX TIMES TO ALIGN IT WITH THE BEGINNING
; OF THE FIELD

LDY
BEQ

ASL
ROL
DEY
BNE

INDEX
GETFLD

MASK
MASK+1

SHFTLP

;BRANCH IF INDEX = 0

;SHIFT LOW BYTE, CARRY := BIT 7
;ROTATE HIGH BYTE, BIT 0 := CARRY

;CONTINUE UNTIL INDEX = 0

;GET THE FIELD BY ANDING THE MASK AND THE VALUE

LDA
AND
STA
LDA
AND
STA

VALUE
MASK
VALUE
VALUE+1
MASK+1
VALUE+1

7AND LOW BYTE OF VALUE WITH MASK .
;STORE IN VALUE

;AND HIGH BYTE OF VALUE WITH MASK
;STORE IT

318 &7 MANIPULATIONS AND SHIFTS

;NORMALIZE THE FIELD TO BIT 0 BY SHIFTING RIGHT INDEX TIMES

LDY INDEX .

BEQ EXIT ;BRANCH IF INDEX = 0.

NORMLP: _
LSR VALUE+1 ;SHIFT HIGH BYTE RIGHT, CARRY := BIT 0
ROR VALUE ;ROTATE LOW BYTE RIGHT, BIT 7 := CARRY
DEY
BNE NORMLP ;CONTINUE UNTIL DONE

EXIT: :
LDY VALUE
LDA VALUE+1
RTS
;MASK ARRAY WHICH IS USED TO CREATE THE MASK

MSKARY:

.WORD 0000000000000001B
.WORD 0000000000000011B
.WORD 00000600000001118
.WORD 0000000000001111B
.WORD 0000000000011111B
.WORD 0000000000111111B
.WORD 0000000001111111B
.WORD 0000000011111111B
.WORD 0000000111111111B
.WORD 0000001111111111B
.WORD 0000011111111111B
JWORD 0000111111111111B
LWORD 0001111111111111B
JWORD 0011111111111111B
JWORD 0111111111111111B
JWORD 11111111111111118B

INDEX: .BLOCK 1 ; INDEX INTO WORD -

WIDTH: .BLOCK 1 ;WIDTH OF FIELD (NUMBER OF BITS)

VALUE: .BLOCK 2 ;DATA WORD TO EXTRACT THE FIELD FROM
2 ; TEMPORARY FOR CREATING THE MASK

MASK: .BLOCK

SAMPLE EXECUTION:

~e we wa we we

SC0704:
LDA VAL+1
PHA
LDA VAL .
PHA ;PUSH THE DATA WORD
LDA NBITS .
PHA " ;PUSH FIELD WIDTH (NUMBER OF BITS)

LDA PGS

o we wme we ws

7D (BFE) BIT FIELD EXTRACTION 319

PHA ;PUSH INDEX TO FIRST BIT OF THE FIELD
JSR BFE ; EXTRACT
BRK iRESULT FOR VAL = 1234H, NBITS = 4, POS = 4 IS

; REGISTER A = 0, REGISTER Y = 3

JMP 5C0704

;TEST DATA, CHANGE FOR OTHER VALUES

VAL: .WORD 01234H
NBITS: .BYTE 4
POS: .BYTE 4

. END ; PROGRAM

Bit Field Insertion (BFI)

7E

Inserts a field of bits into a word. The width
of the field and its starting (lowest) bit posi-
tion are specified.

Procedure: The program obtains a mask
with the specified number of 0 bits from a
table. It then shifts the mask and the bit field

left to align them with the specified starting
bit position. It logically ANDs the mask and
the original data word, thus clearing the
required bit positions, and then logically ORs

the result with the shifted bit field.

Registers Used: All

Execution Time: 31 * STARTING BIT POSI-
TION plus 142 cycles overhead. The starting bit
position of the field determines how many times
the mask and the field must be shifted left. For
example, if the field is inserted starting in bit 10,
the execution time is

31+ 10 + 142 = 310 + 142 = 452 cycles.
Program Size: 130 bytes

Data Memory Required: Eight bytes anywhere in
RAM for the index (one byte at address
INDEX), the width of the field (one byte at
address WIDTH), the value to be inserted (two
bytes starting at address INSVAL), the data

value (two bytes starting at address VALUE),
and the mask (two bytes starting at address
MASK).

Special Cases:

1. Attempting to insert a field that would
extend beyond the end of the word causes the
program to insert only the bits through bit 15.
That is, no wraparound is provided. If, for exam-
ple, the user attempts to insert a 6-bit field start-
ing at bit 14, only 2 bits (bits 14 and 15) are
actually replaced.

2. Both the starting bit position and the length
of the bit field are interpreted mod 16. That is, for
example, bit position 17 is the same as bit posi-
tion 1 and a 20-bit field is the same as a 4-bit field.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Lowest bit position (starting position) of field

Number of bits in the field

Less significant byte of bit field (value to

insert)

More significant byte of bit field (value to

insert)

Less significant byte of original data value
More significant byte of original data value

320

Exit Conditions

More significant byte of result in accumulator
Less significant byte of result in register Y

The result is the original data value with the

bit field inserted, starting at the specified

bit position.

7€ (BFI) BIT FIELD INSERTION 321

Examples
1. Data: Value = F67C |, = 1111011001111100, 2. Data: Value = A2D4,, = 1010001011010100,

Starting bit position = 4 Starting bit position = 6

Number of bits in the field = § Number of bits in the field = 5

Bit field = 008B,, = 0000000010001011, Bit field = 0015,, = 0000000000010101,

Result: Value with bit field inserted = A554,4
Result: Value with bitfield inserted = F8BC = 1010010101010100,

= 1111100010111100, The 5-bit field has been

The 8-bit field has been inserted inserted into the original value starting at

into the original value starting at bit 4 bit 6 (that is, into bits 6 through 10).

(that is, into bits 4 through 11). Those five bits were 01011, (0B,,) and

are now 10101, (15,).
\

; Title Bit Field Insertion ;
; Name: BFI ;
i ' i
; H
; ' ;
; Purpose: Insert a field of bits which is normalized to ;
H bit 0 into a 16 bit word. ;
; NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN ;
H ONLY THE BITS THROUGH BIT 15 WILL BE ;
; INSERTED. FOR EXAMPLE IF A 4 BIT FIELD IS H
H TO BE INSERTED STARTING AT BIT 15 THEN H
; ONLY THE FIRST BIT WILL BE INSERTED AT ;
H BIT 15. ;
; ;
; Entry: TOP OF STACK :
; Low byte of return address, ;
H High byte of return address, ;
H Bit position at which inserted field will :
; start (0..15), :
H Number of bits in the field (1..16), ;
H Low byte of value to insert, ;
H High byte of value to insert, H
; Low byte of value, :
: High byte of value H
H H
H Exit: Register A = High byte of value with field ;
; inserted H
: Register Y = Low byte of value with field H
: inserted ;
; H

Registers used: All

322 5T MANIPULATIONS AND SHIFTS

Time: 142 cycles overhead plus
(31 * starting bit position) cycles

Size: . . Program 130 bytes
' Data 8 bytes

e N6 %o we W ws ws we
~e we we W we wa we N

BFI:
;SAVE RETURN ADDRESS IN Y, X
PLA
TAY
PLA
TAX
;GET THE LOWEST BIT NUMBER OF THE FIELD
PLA
AND $0FH ;:MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15
STA INDEX ;SAVE INDEX
;GET THE NUMBER OF BITS IN THE FIELD (MAP FROM 1. .WIDTH TO 0..WIDTH-1)
PLA
SEC
SBC #1 ;SUBTRACT 1
AND $0FH ;MAKE SURE IT IS 0 TO 15
STA WIDTH ;SAVE WIDTH
:+GET THE VALUE TO BE INSERTED (BIT FIELD)
PLA A
STA INSVAL
PLA
STA INSVAL+1
;GET THE DATA WORD
PLA
STA VALUE
PLA
STA VALUE+1
;RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA

;CONSTRUCT THE MASK
; INDEX INTO THE MASK ARRAY USING THE WIDTH P&RAMETER

LDA WIDTH

ASL A ;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH
TAY

LDA MSKARY, Y

STA MASK

INY

LDA MSKARY, Y

STA MASK+1

SHFTLP:

INSERT:

MSKARY:

INDEX:
WIDTH:
INSVAL:
VALUE:
MASK:

7E (BFI) BIT FIELD INSERTION 323

iSHIFT MASK AND BIT FIELD LEFT INDEX TIMES TO ALIGN THEM
; WITH THE BEGINING OF THE FIELD

LDY INDEX

BEQ INSERT ;BRANCH IF INDEX = 0

SEC ;FILL THE MASK WITH ONES

ROL MASK ;ROTATE LOW BYTE SHIFTING A 1 TO BIT 0 AND
’ ; BIT 7 TO CARRY

ROL MASK+1 ;ROTATE HIGH BYTE, BIT 0 := CARRY

ASL INSVAL ;SHIFT THE INSERT VALUE SHIFTING IN ZEROS

ROL INSVAL+1

DEY .

BNE SHFTLP ;CONTINUE UNTIL INDEX = 0

;USE THE MASK TO ZERO THE FIELD AND THEN OR IN THE INSERT VALUE

LDA VALUE

AND MASK ;AND LOW BYTE OF VALUE WITH MASK

ORA INSVAL ' ,
TAY JREGISTER Y = LOW BYTE OF THE NEW VALUE
LDA VALUE+1

AND MASK+1 ;AND HIGH BYTE OF VALUE WITH MASK

ORA INSVAL+1 ;REGISTER A = HIGH BYTE OF THE NEW VALUE
; RETURN

RTS

;MASK ARRAY WHICH IS USED TO CREATE THE MASK

.WORD 1111111111111110B
.WORD 11111111111111060B
+WORD 11111111111110008B
.WORD 1111111111110000B
. WORD 1111111111100000B
«WORD - 1111111111000000B
«WORD 1111111110000000B
.WORD 11111111000000008B
-WORD 1111111000000000B
.WORD 1111110000000000B
-WORD 1111100000000000B
.WORD 1111000000000000B
. WORD 1110000000000000B
.WORD 1100000000000000B
«WORD 1000000000000000B '
+.WORD 0000000000000000B

.BLOCK 1 ;INDEX INTO WORD

.BLOCK 1 ;WIDTH OF FIELD

.BLOCK 2 ;VALUE TO INSERT

.BLOCK 2 ; DATA WORD

.BLOCK 2 ;TEMPORARY FOR CREATING THE MASK

324 5T MANIPULATIONS AND SHIFTS

SAMPLE EXECUTION:

wa wo %o we we

SC0705:
LDA VAL+1 - ;PUSH THE DATA WORD
PHA
LDA VAL
PHA ‘
LDA VALINS+1 ;PUSH THE VALUE TO INSERT
PHA :
LDA VALINS
PHA
LDA NBITS ;PUSH THE FIELD WIDTH
PHA
LDA POS ;PUSH THE STARTING POSITION OF THE FIELD
PHA
JSR BFI ; INSERT
BRK ;RESULT FOR VAL = 1234H, VALINS = OEH,

; NBITS = 4, POS = OCH IS
; REGISTER A = E2H, REGISTER Y = 34H

JMP §C0705

;TEST DATA, CHANGE FOR OTHER VALUES
VAL: .WORD 01234H

VALINS: .WORD OEH

NBITS: .BYTE 04H

POS: .BYTE OCH

.END ; PROGRAM

e we we wo we

Multiple-Precision Arithmetic Shift Right

(MPASR)

7F

Shifts a multi-byte operand right
arithmetically by a specified number of bit
positions. The length of the number (in
bytes) is 255 or less. The Carry flag is set to

the value of the last bit shifted out of the

rightmost bit position. The operand is stored
with its least significant byte at the lowest

address. ,

Procedure: The program obtains the sign
bit from the most significant byte, shifts that
bit to the Carry, and then rotates the entire
operand right one bit, starting with the most
significant byte. It repeats the operation for
the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (18 +
18 * LENGTH OF OPERAND IN BYTES) + 85
cycles.
If, for example, NUMBER OF SHIFTS =
6 and LENGTH OF OPERAND IN BYTES = 8,
the execution time is
6+ (18 + 18+8) + 85 =6+162 + 85 = 1057
cycles

Program Size: 69 bytes

Data Memory Required: Three bytes anywhere
in RAM plus two bytes on page 0. The three bytes
anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)
and the length of the operand (one byte at
address LENGTH) and the most significant byte
of the operand (one byte at address MSB). The
two bytes on page 0 hold a pointer to the operand
(starting at address PTR,00D0j¢ in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted right arithmetically by the
specified number of bit positions. The origi-
nal sign bit is extended to the right. The
Carry flag is set according to the last bit
shifted from the rightmost bit position (or
cleared if either the number of shifts or the
length of the operand is zero).

325

326 i1 MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = (8 2. Data:
Operand = 85A4C719FE06741E 4
Number of shifts = 04

Result: Shifted operand = F85A4C719FE06741 . Result:
This is the original operand shifted right '
four bits arithmetically (the four most
significant bits thus all take on the value
of the original sign bit, which was 1).
Carry = 1, since the last bit shifted from
the rightmost bit position was 1.

Length of operand (in bytes) = 04
Operand = 3F6A42D3
Number of shifts = 03

Shifted operand = 07TED485A .

This is the original operand shifted
right three bits arithmetically (the
three most significant bits thus all
take on the value of the original sign
bit, which was 0).

Carry = 0, since the last bit shifted
from the rightmost bit position was 0.

; Title Multiple-precision arithmetic shift right ;
; Name: MPASR ;
H i
H H
Purpose: Arithmetic shift right a multi-byte operand
N bits.
Entry: TOP OF STACK

The operand is stored

bit propagated.

Registers used: All

Time: 85 cycles overhead plus
Size: Program 69 bytes\
Data 3 bytes plus

N e We e WS NS WE Wy W6 W WG WE W WE W WE We WE We WO W W Ne e We We W e We e o

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand,
High byte of address of the operand

least significant byte and ARRAY [LENGTH-1]
its most significant byte.

Exit: Operand shifted right with the most significant

CARRY := Last bit shifted from least
significant position.

((18 * length) + 18) cycles per shift

2 bytes in page zero

with ARRAY (0] as its

@8 WE ME NE NE NE e e WS NE WA WE W W6 W We Wg WE W MO MI N W W We We Wy N ws W he

7F (MPASR) MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT 327

. ;EQUATES

PTR: .EQU ODOH ;PAGE ZERO FOR POINTER TO OPERAND
MPASR:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA .

PHA ;RESTORE RETURN ADDRESS

;INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT 1EXIT IF LENGTH OF OPERAND IS 0

LDA NBITS .

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

; DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH

; AS A COUNTER AND THE INDEX

LDA PTR .

BNE MPASR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
MPASR1: DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY LENGTH :

LDA (PTR) , ¥ ;GET THE MOST SIGNIFICANT BYTE

STA MSB ;SAVE IT FOR THE SIGN
ASRLP: ' :

LDA MSB ;GET THE MOST SIGNIFICANT BYTE

ASL A ;SHIFT BIT 7 TO CARRY FOR SIGN EXTENSION

LDY LENGTH ;Y = INDEX TO LAST BYTE AND THE COUNTER

iSHIFT RIGHT ONE BIT

328 5T MANIPULATIONS AND SHIFTS

;GET NEXT BYTE
;ROTATE BIT 7 := CARRY, CARRY := BIT 0
:STORE NEW VALUE i
:DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS
:DECREMENT SHIFT COUNTER
;CONTINUE UNTIL DONE

LOOP:
LDA (PTR) , Y
ROR A
STA (PTR) , Y
DEY
BNE LOOP
DEC NBITS
BNE ASRLP
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1
LENGTH: .BLOCK 1
MSB: .BLOCK 1

e ws w2 we we

§C0706:

PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

’

; DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY- .BYTE

.END

AYADR+1

AYADR

$SZAY

SHIFTS

MPASR

SC0706

7
4
AY

; PROGRAM

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND IN BYTES
;MOST SIGNIFICANT BYTE

SAMPLE EXECUTION:

~ e we we we

;PUSH STARTING ADDRESS OF OPERAND

;PUSH LENGTH OF OPERAND

;PUSH NUMBER OF SHIFTS

;SHIFT
;RESULT OF SHIFTING

IN MEMORY AY
AY+1
AY+2
AY+3
AY+4
AY+5
AY+6

~s we ne we we N we =

tonownnnn

; LENGTH OF OPERAND
;NUMBER OF SHIFTS

AY =
AY =
0328
054H
076H
098H
OBAH
ODCH
OFEH

EDCBA987654321H, 4 BITS IS
FEDCBA98765432H, C=0

;:STARTING ADDRESS OF OPERAND
21H,43H,65H, 87H, 0A9H, 0CBH, OEDH

Multiple-Precision Logical Shift Left (MPLSL)

7G

Shifts a multi-byte operand left logically
by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set to the value of the last bit
shifted out of the leftmost bit position. The
operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then rotates
the entire operand left one bit, starting with
the least significant byte. It repeats the opera-
tion for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS + (16 +
20 * LENGTH OF OPERAND IN BYTES) + 73
cycles.

If, for example, NUMBER OF SHIFTS =
and LENGTH OF OPERAND IN BYTES = 6
(i.e., a 4-bit shift of a byte operand) the execution
time is

4+ (6+20+6) + 73 =

617 cycles.

4+ (136) + 73 =

Data Memory Required: Two bytes anywhere!in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0, in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted left logically by the specified
number of bit positions (the least significant
bit positions are filled with zeros). The Carry
flag is set according to the last bit shifted
from the leftmost bit position (or cleared if
either the number of shifts or the length of
the operand is zero).

329

330 BIT MANIPULATIONS AND SHIFTS

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4C719FE06741E¢ Operand = 3JF6A42D3,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = SA4CT19FEQ6741E0,. Result: Shified operand = FB521698,. This is

. e we we

w WS ws WE We ms we WS WE WO WE wa W We W W N W Ne WE WS W We W6 Mo W N "o

This is the original operand shifted
left four bits logically; the four least

significant bits are all cleared. bits are all cleared.

Carry = 0, since the last bit shifted from
the leftmost bit position was 0.

Carry = 1, since the last bit

was 1.

Title
Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Multiple-precision logical shift left
MPLSL

Logical shift left a multi-byte operand N bits

TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand

The operand is stored with ARRAY[0] as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte.

Operand shifted left filling the least
significant bits with zeros.
CARRY := Last most significant bit

All .

73 cycles overhead plus
({20 * length) + 16) cycles per shift

Program 54 bytes
Data 2 bytes plus
2 bytes in page zero

the original operand shifted left three
bits logically; the three least significant

shifted from the leftmost bit position

~ we we we

Nt me Ne we ME e, %6 %6 WO W we We we e NE W6 N Ne Se e N Ns We Ns W4 e e W

7G (MPLSL) MULTIPLE‘PRECISION LOGICAL SHIFT LEFT 331

s EQUATES
PTR: ,EQU 0DOH ;PAGE ZERO FOR POINTER TO OPERAND
MPLSL:
;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX
;GET NUMBER OF BITS
PLA
STA NBITS
;GET LENGTH OF OPERAND
PLA
STA LENGTH
{GET STARTING ADDRESS OF THE OPERAND
PLA
STA PTR
PLA
STA PTR+1
;RESTORE THE RETURN ADDRESS
TXA
PHA
TYA
PHA ;RESTORE RETURN ADDRESS
sINITIALIZE
CLC ;CLEAR CARRY
LDA LENGTH
BEQ EXIT ;EXIT IF LENGTH OF THE OPERAND IS 0
LDA NBITS
BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0
; WITH CARRY CLEAR
- ;LOOP ON THE NUMBER OF SHIFTS TO PERFORM
LSLLP:
LDY #0 ;¥ = INDEX TO LOW BYTE OF THE OPERAND
LDX LENGTH ;X = NUMBER OF BYTES .
CLC sCLEAR CARRY TO FILL WITH ZEROS
;SHIFT LEFT ONE BIT
LOOP:
LDA (PTR) ,Y ;GET NEXT BYTE
ROL A sROTATE BIT 0 := CARRY, CARRY := BIT 7
STA (PTR),Y +STORE NEW VALUE
INY ; INCREMENT TO NEXT BYTE
DEX ;DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES

i DECREMENT NUMBER OF SHIFTS
DEC NBITS ;DECREMENT SHIFT COUNTER
BNE LSLLP ;CONTINUE UNTIL DONE

332 it MANIPULATIONS AND SHIFTS

EXIT:
RTS

;DATA SECTION

NBITS: .BLOCK
LENGTH: .BLOCK

we we e we we

SC0707:
LDA
PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

’

:DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY: .BYTE

. END

1
1

SAMPLE EXECUTION:

AYADR+1

AYADR

$#SZAY

SHIFTS

MPLSL

5C0707

7
4

" AY

21H,43H,

; PROGRAM

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND

. me mp w we

; PUSH STARTING ADDRESS OF OPERAND

;PUSH LENGTH OF OPERAND

; PUSH NUMBER OF SHIFTS

;SHIFT

;RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS
H AY = DCBA9876543210H, C=0

; IN MEMORY AY = 010H

; AY+l = 032H

: AY+2 = (054H

; AY+3 = 076H

H AY+4 = 098H

; AY+5 = OBAH

H = 0ODCH

AY+6

;LENGTH OF OPERAND

;:NUMBER OF SHIFTS

;STARTING ADDRESS OF OPERAND
65H,87H, 0A9H, 0OCBH, OEDH

Mulitiple-Precision Logical Shift Right (MPLSR)

7H

Shifts a multi-byte number right logically
by a specified number of bit positions. The
length of the operand (in bytes) is 255 or less.
The Carry flag is set to the value of the last bit
shifted out of the rightmost bit position. The
operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry
initially (to fill with a 0 bit) and then rotates
the entire operand right one bit, starting with
the most significant byte. It repeats the
operation for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (14 +
18 *» LENGTH OF OPERAND IN BYTES) + 80
cycles.

and LENGTH OF OPERAND IN BYTES = §
(i.e., a 4-bit shift of an 8-byte operand), the
execution time is
4+ (14 + 18+8) + 80 = 4+ (158) + 80 =
712 cycles.
Program Size: 59 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

If, for example, NUMBER OF SHIFTS = 4

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS) .
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D, in the listing).

Special Cases:

1. If the length of the operand is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand shifted right logically by the
specified number of bit positions (the most
significant bit positions are filled with zeros).
The Carry flag is set according to the last bit
shifted from the rightmost bit position. (or
cleared if either the the number of shifts or
the length of the operand is zero).

333

334 &7 MANIPULATIONS AND SHIFTS

w we we wa

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4CT719FEQ6741E ¢ Operand = 3F6A42D3,,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = 085A4C719FE06741 4. Result: Shifted operand = 07ED485A 6.
This is the original operand shifted right This is the original operand shifted
four bits logically; the four most right three bits logically; the three least
significant bits are all cleared.) significant bits are all cleared.
Carry = 1, since the last bit shifted from Carry = 0, since the last bit shifted
the rightmost position was 1. from the rightmost bit position was 0.
; Title Multiple-Precision logical shift right
; Name: MPLSR
;
Purpose: Logical shift right a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY[0] as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte. T
Exit: Operand shifted right filling the most

significant bits with zeros
CARRY := Last bit shifted from the least
significant position :

Registers used: All

Time: 85 cycles overhead plus
({18 * length) + 14) cycles per shift
Size: Program 59 bytes
Data 2 bytes plus

2 bytes in page zero

~e me e we e Ne we Ne 6 WE Ne We We NS Wa NS We We W& We Ne We W6 Ve e e e W6 e =
e ws ne wo e we we e WS WG WE wp We We We W We %o We e N3 we S N4 NS % Ve %p %e %o

MPLSR:

MPLSR1:

LSRLP:

LOOP:

7H (MPLSR) MULTIPLE-PRECISION LOGICAL SHIFT RIGHT 335

s EQUATES
PTR: .EQU UDOH ;PAGE ZERO FOR POINTER TO OPERAND

;SAVE RETURN ADDRESS

PLA
. TAY

PLA

TAX .

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING' ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA :

PHA - ;RESTORE RETURN ADDRESS
;INITIALIZE ‘ :

CLC . ;CLEAR CARRY

LDA LENGTH -

BEQ EXIT ;EXIT IF LENGTH OF OPERAND IS 0
LDA NBITS .

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS ¢

;7 WITH CARRY CLEAR

;DECREMéET POINTER SO. THAT THE hENGTH BYTE MAY BE USED BOTH
i AS A COUNTER AND THE INDEX

LDA PTR
BNE MPLSR1 . . _

DEC PTR+1 . ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
DEC PTR ;ALWAY DECREMENT HIGH BYTE

; LOOP ok THE NUMBER OF SHIFTS TO PERFORM

LDY LENGTH ;Y = INDEX TO MSB AND COUNTER
CLC ;CLEAR CARRY TO FILL WITH ZEROS

:SHIFT RIGHT ONE BIT
LDA (PTR) ,Y ;GET NEXT BYTE

ROR A jROTATE BIT 7 := CARRY, CARRY := BIT 0
STA (PTR) ,Y ;STORE NEW VALUE

336 T MANIPULATIONS AND SHIFTS

DEY ; DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES
; DECREMENT NUMBER OF SHIFTS
DEC NBITS ;DECREMENT SHIFT COUNTER
BNE LSRLP ;CONTINUE UNTIL DONE '
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1 ;NUMBER OF BITS TO SHIFT
LENGTH: .BLOCK 1 ;LENGTH OF OPERAND

SAMPLE EXECUTION:

~e ws we we e
~e wa ws s s

SC0708:
LDA AYADR+l ;PUSH STARTING ADDRESS OF OPERAND
PHA
LDA AYADR
PHA
LDA #SZAY ;PUSH LENGTH OF OPERAND
PHA .
LDA SHIFTS ;PUSH NUMBER OF SHIFTS
PHA
JSR MPLSR ;SHIFT
BRK :RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS
H "AY = OEDCBA98765432H, C=0
; IN MEMORY AY = 032H
; AY+1l = 054H
; AY+2 = 076H
; AY+3 = 098H X
: AY+4 = (BAH
; AY+5 = ODCH
: AY+6 = OOEH
JMP sC0708
H
;DATA SECTION
SZAY: .EQU 7 ; LENGTH OF OPERAND
SHIFTS: .BYTE 4 ;NUMBER OF SHIFTS
AYADR: .WORD AY _ :STARTING ADDRESS OF OPERAND
AY: .BYTE 21H,43H,65H,87H,0A9H, 0CBH, OEDH

. END ; PROGRAM

Multiple-Precision Rotate Right (MPRR) 71

Rotates a multi-byte operand right by a
specified number of bit positions (as if the
most significant bit and least significant bit
were connected directly). The length of the
operand in bytes is 255 or less. The Carry flag
is set to the value of the last bit shifted out of
the rightmost bit position. The operand is
stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 0 of the
least significant byte of the operand to the
Carry flag and then rotates the entire operand
right one bit, starting with the most signifi-
cant byte. It repeats the operation for the
specified number of shifts.

Registers used: All

Execution Time: NUMBER OF SHIFTS +* (21
+ 18 * LENGTH OF OPERAND IN BYTES)
+ 85 cycles.

If for example, NUMBER OF SHIFTS = 6 and
LENGTH OF OPERAND INBYTES = 4 (j.e.a
6-bit shift of a 4-byte operand), the execution
time is

6*(21 +18+4) + 85=16+(93) + 85

+ 643 cycles.

Program Size: 63 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0,4 in the listing).

Special Cases: :

1. If the length of the operand is zero, the
program exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the pro-
gram exits immediately with the operand
unchanged and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand rotated right by the specified num-
ber of bit positions (the most significant bit
positions are filled from the least significant
bit positions). The Carry flag is set according
to the last bit shifted from the rightmost bit
position (or cleared if either the number of
shifts-or the length of the operand is zero).

337

338 5T MANIPULATIONS AND SHIFTS ‘

Examples
1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4CT19FEQ6741E,¢ Operand = 3F6A42D3,,
Number of shifts = 04 Number of shifts = 03
Result: Shifted operand = E85A4C719F306741 ¢. Result: Shifted operand = 67ED485A . This is
This is the original operand rotated right the original operand rotated right 3 bits;
four bits: the four most significant bits ' the three most significant bits (011) are
are equivalent to the original four equivalent to the original three least
least significant bits. significant bits.
Carry = 1, since the last bit shifted from Carry = 0, since the last bit shifted
the rightmost bit position was 1. from the rightmost bit position was 0.
: Title Multiple-precision rotate right H
; Name: MPRR ;
H ;
; H
Purpose: Rotate right a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY [0]) as its
least significant byte and ARRAY [LENGTH-1]
its most significant byte.
Exit: Operand rotated right

CARRY := Last bit shifted from the least
significant position

Registers used: All

Time: 85 cycles overhead plus
((18 * length) + 21) cycles per shift
Size: Program 63 bytes
Data 2 bytes plus

2 bytes in page zero

N we we we e WO Ws N Wo WE Ne M We We WE W2 W We S Wy Ns N6 S N6 %6 % e ~ we
Ne we we we me we we WP we ws e Ne Ne We Ne e W w2 we e ws N %@ Ne e W %o e Se

;EQUATES
PTR: .EQU ODOH ;PAGE ZERQO FOR POINTER TG OPERAND

MPRR:

MPRR1:

RRLP:

LOOP:

7! (MPRR) MULTIPLE-PRECISION ROTATE RIGHT 339

;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX

;GET NUMBER OF BITS
PLA
STA NBITS

iGET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

:RESTORE THE RETURN ADDRESS

TXA

PHA

TYA ’

PHA :RESTORE RETURN ADDRESS

;INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT 7EXIT IF LENGTH OF THE OPERAND IS 0
LDA NBITS

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

;7 WITH CARRY CLEAR

i DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH
: AS A COUNTER AND THE INDEX)

LDA PTR

BNE MPRR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED
DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY #1

LDA (PTR) , Y ;GET LOW BYTE OF THE OPERAND

LSR A ' ;CARRY := BIT 0 OF LOW BYTE

LDY LENGTH ;Y = INDEX TO HIGH BYTE AND COUNTER

;ROTATE RIGHT ONE BIT

LDA (PTR),Y ;GET NEXT BYTE
ROR A ;ROTATE BIT 7 := CARRY, CARRY := BIT 0

340 5T MANIPULATIONS AND SHIFTS

STA (PTR) ,Y :STORE NEW VALUE
DEY ; DECREMENT COUNTER
BNE LOOP ;CONTINUE THROUGH ALL THE BYTES
:DECREMENT NUMBER OF SHIFTS
DEC . NBITS ;DECREMENT SHIFT COUNTER
BNE RRLP ;CONTINUE UNTIL DONE
EXIT:
RTS
;DATA SECTION
NBITS: .BLOCK 1 ;NUMBER OF BITS TO.SHIFT
LENGTH: .BLOCK 1 ;LENGTH OF OPERAND

SAMPLE EXECUTION:

~e W we we wa
P N

SC0709:
LDA AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND
PHA
LDA AYADR
PHA
LDA $SZAY ;PUSH LENGTH OF OPERAND R
PHA
LDA SHIFTS ;PUSH NUMBER OF SHIFTS
PHA
JSR MPRR ; ROTATE : .
BRK ;RESULT OF ROTATING AY = EDCBA987654321H 4 BITS IS
; AY = 1EDCBA98765432H C=0
; IN MEMORY AY = 032H
H AY+l = U54H
; AY+2 = 076H
H AY+3 = 098H
H AY+4 = OBAH
; AY+5 = ODCH
; AY+6 = UlEH
JMP SC0709
i
; DATA SECTION)
SZAY: . EQU 7 ;LENGTH OF OPERAND IN BYTES
SHIFTS: .BYTE 4 ;sNUMBER OF SHIFTS
AYADR: .WORD AY ; STARTING ADDRESS OF OPERAND
AY: .BYTE 21H,43H,65H,87H,0A9H, 0CBH, OEDH

. END ; PROGRAM

Multiple-Precision Rotate Left (MPRL)

7J

Rotates a multi-byte operand left by a
specified number of bit positions (i.e., as if
the most significant bit and least significant
bit were connected directly). The length of
the operand in bytes is 255 or less. The Carry
flag is set to the value of the last bit shifted
out of the leftmost bit position. The operand
is stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 7 of the
most significant byte of the operand to the
Carry flag. It then rotates the entire operand
left one bit, starting with the least significant
byte. It repeats the operation for the specified
number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS « (27 +
20 » LENGTH OF OPERAND IN BYTES) + 73
cycles.

If, for example, NUMBER OF SHIFTS =
and LENGTH OF OPERAND IN BYTES =
(i.e., a 4-bit shift of an 8-byte operand), the
execution time is

4«27 +20+8) + 73 =487 +73 =

821 cycles.

4
8

Program Size: 60 bytes

Data Memory Required: Two bytes anywhere in
RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the
number of shifts (one byte at address NBITS)
and the length of the operand in bytes (one byte
at address LENGTH). The two bytes on page 0
hold a pointer to the operand (starting at address
PTR, 00D0¢ in the listing).

Special Cases:

1. If the length of the operand is zero, the
program exits immediately with the operand
unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program
exits immediately with the operand unchanged
and the Carry flag cleared.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of shifts (bit positions)
Length of the operand in bytes

Less significant byte of starting address of
operand (address of its least significant
byte)

More significant byte of starting address of
operand (address of its least significant
byte)

Exit Conditions

Operand rotated left by the specified number
of bit positions (the least significant bit posi-
tions are filled from the most significant bit
positions). The Carry flag is set according to
the last bit shifted from the leftmost bit posi-
tion (or cleared if either the number of shifts
or the length of the operand is zero).

341

342 i1 MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes) = 04
Operand = 85A4C719FE06741E ¢ Operand = 3F6A42D34
Number of shifts =04 - Number of shifts = 03
Result: Shifted operand = SA4C719FE06741E8,. Result: Shifted operand = F8521699,6. This is
This is the original operand rotated left the-original operand rotated left three bits;
four bits; the four least significant bits the three least significant bits (001)
are equivalent to the original four most are equivalent to the original three most
significant bits. significant bits.
Carry = 0, since the last bit shifted Carry = 1, since the last bit shifted
from the leftmost bit position was 0. from the leftmost bit position was 1.
; Title . Multiple-precision rotate left :
; Name: MPRL H
i H
. Purpose: Rotate left a multi-byte operand N bits
Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Number of bits to shift,
Length of the operand in bytes,
Low byte of address of the operand,
High byte of address of the operand
The operand is stored with ARRAY [0) as its
least significant byte and ARRAY |LENGTH-1]
its most significant byte.
Exit: Number rotated left

CARRY := Last bit shifted from the most
significant position :

‘Registers used: All

Time: 73 cycles overhead plus
((20 * length) + 27) cycles per shift

Size: Program 60 bytes
Data 2 bytes plus
2 bytes in page zero

Ne we NE we W6 N6 W& We We W8 W& ws We Ma WS We We WM& We W %o N N6 N me S %o %o
Ne Mo e wo Tms e wa M e Wb ma W ms We W Ve W Ne W NE My N Wa e e Se Se S e

;EQUATES .
PTR: .EQU ODOH ; PAGE ZERO FOR POINTER TO OPERAND

7J (MPRL) MULTIPLE-PRECISION ROTATE LEFT 343

MPRL:
;SAVE RETURN ADDRESS
PLA
TAY
PLA
TAX
;GET NUMBER OF BITS
PLA
STA NBITS
;GET LENGTH OF OPERAND
PLA
STA LENGTH
;GET STARTING ADDRESS OF THE OPERAND
PLA
STA PTR
PLA
STA PTR+1
;RESTORE THE RETURN ADDRESS
TXA ,
PHA
TYA .) .
PHA .;RESTORE RETURN ADDRESS
;INITIALIZE .
CLC ;CLEAR CARRY
LDA LENGTH , » ,]
BEQ EXIT ;EXIT IF THE LENGTH OF THE OPERAND IS 0
LDA NBITS - , ’ .
BEQ EXIT - EXIT IF NUMBER OF BITS TO SHIFT 1S 0
; WITH CARRY CLEAR
;LOOP ON THE NUMBER OF SHIFTS TO PERFORM
RLLP: ,
LDY LENGTH
DEY o ‘
LDA (PTR), Y iGET HIGH BYTE OF THE OPERAND
ASL A "~ ;CARRY := BIT 7 OF HIGH BYTE .
LDY #0 © ;Y = INDEX TO LEAST SIGNIFICANT BYTE
LDX LENGTH ;X = NUMBER OF BYTES
;ROTATE LEFT ONE BIT
LOOP: ’
LDA (PTR) , Y " 3GET NEXT BYTE]
ROL A " $ROTATE BIT 7 := CARRY, CARRY := BIT 0
STA (PTR),Y :sSTORE NEW VALUE -
INY " .;INCREMENT TO NEXT BYTE
DEX .;DECREMENT COUNTER

BNE LOOP ;CONTINUE THROUGH ALL THE BYTES

; DECREMENT NUMBER OF SHIFTS]
DEC NBITS 7DECREMENT SHIFT COUNTER
BNE RLLP ;CONTINUE UNTIL DONE

344 T MANIPULATIONS AND SHIFTS

EXIT:
RTS

;DATA SECTION

NBITS: .BLOCK
LENGTH: .BLOCK

~ we e

SC0710:
LDA
PHA
LDA
PHA

LDA
PHA

LDA
PHA
JSR
BRK

JMP

!

;DATA SECTION
SZAY: . EQU
SHIFTS: .BYTE
AYADR: .WORD
AY: .BYTE

.END

1
1

SAMPLE EXECUTION:

;NUMBER OF BITS TO SHIFT
;LENGTH OF OPERAND

v N Wy we we

AYADR+1 ;PUSH STARTING ADDRESS OF .OPERAND

AYADR

#SZAY

SHIFTS

MPRL

sC0710

7

4

AY
21H,43H,

; PROGRAM

;PUSH LENGTH OF OPERAND

; PUSH NUMBER OF SHIFTS

; ROTATE
;RESULT OF ROTATING AY = EDCBAY87654321H, 4 BITS IS
; AY = DCBA987654321EH, C=0

H IN MEMORY AY = 0lEH
H AY+l = 032H
; AY+2 = 054H
; AY+3 = 076H
; AY+4 = 098H
H AY+5 = OBAH
; AY+6 = ODCH

; LENGTH OF OPERAND IN BYTES
:NUMBER OF SHIFTS

;ADDRESS OF OPERAND
65H,87H, 0A9H, 0CBH, OEDH

String Compare (STRCMP)

8A

Compares two strings and sets the Carry
and Zero flags appropriately. The Zero flag is
set to 1 if the strings are identical and to 0
otherwise. The Carry flag is set to 0 if the
string with the address higher in the stack
(string 2) is larger than the other string
(string 1); the Carry flag is set to 1 otherwise.
The strings are a maximum of 255 bytes long
and the actual characters are preceded by a
byte containing the length. If the two strings
are identical through the length of the
shorter, then the longer string is considered
to be larger.

Procedure: The program first determines
which string is shorter from the lengths
which precede the actual characters. It then
compares the strings one byte at a time
through the length of the shorter. If the pro-
gram finds corresponding bytes that are not
the same through the length of the shorter,
the program sets the flags by comparing the
lengths.

.

Registers Used: All

Execution Time:

1. If the strings are not identical through the
length of the shorter, the approximate execution
time is

81 + 19« NUMBER OF CHARACTERS
COMPARED.
If, for example, the routine compares five charac-
ters before finding a difference, the execution
time is
81 +19+5 = 81 + 95 = 176 cycles.

2. If the strings are identical through the
length of the shorter, the approximate execution
time is

93 + 19« LENGTH OF SHORTER STRING.

If, for example, the shorter string is eight

bytes long, the execution time is

93 + 19+8 = 93 + 152 = 245 cycles.
Program Size: 52 bytes
Data Memory Required: Four bytes on page 0,
two bytes starting at address SIADR (00DO, in
the listing) for a pointer to string 1 and two bytes

starting at address S2ADR (00D2,; in the listing)
for a pointer to string 2.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
string 2 .

More significant byte of starting address of
string 2 ‘

Less significant byte of starting address of
string 1

More significant byte of starting address of
string 1

Exit Conditions

Flags set as if string 2 had been subtracted -
from string 1 or, if the strings are equal
through the length of the shorter, as if the
length of string 2 had been subtracted from
the length of string 1. -

Zero flag = 1 if the strings are identical, 0
if they are not identical.

Carry flag = 0 if string 2 is larger than string
1, Lif they are identical or string 1 is larger.
If the strings are the same through the
length of the shorter, the longer one is con-
sidered to be larger.

345

346 sTRING MANIPULATIONS

Examples
1. Data: String 1 = 05'PRINT’ (05 is the length of
the string)
String 2 = 03°END’ (03 is the length of
the string)
Result: Zero flag = 0 (strings are not identical)
Carry flag = 1 (string 2 is not larger than
string 1)
2. Data: String 1 = 05*PRINT’ (05 is the length of
the string)
String 2 = 02'PR’ (02 is the length of the
string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 1 (string 2 is not larger than
string 1)

The longer string (string 1) is considered
to be larger. If you want to determine
whether string 2 is an abbreviation of string
1, you could use Subroutine 8C (FIND THE
POSITION OF A SUBSTRING) and deter-
mine whether string 2 was part of string 1 and
started at the first character.

String 1 = 05‘PRINT’ (05 is the length of

3. Data:
the string)
String 2 = 06°SYSTEM” (06 is the length
of the string)
Result: Zero flag = 0 (strings are not identical)

Carry flag = 0 (string 2 is larger than
string 1)

We are assuming here that the strings con-
sist of ASCII characters. Note that the byte
preceding the actual characters contains a
hexadecimal number (the length of the
string), not a character. We have represented
this byte as two hexadecimal digits in front of
the string; the string itself is surrounded by
single quotation marks.

Note also that this particular routine treats
spaces like any other characters. If for exam-
ple, the strings are ASCII, the routine will
find . that SPRINGMAID is larger than
SPRING MAID, since an ASCIIM (4D,) is
larger than an ASCII space (20,,).

Title
Name:

String compare
STRCMP

s me e e

Purpose: Compare 2 stri

or cleared.
Entry: TOP OF STACK
High byte of
Low byte of
High byte of
Low byte of
High byte of

A string is
a length byt

Exit: IF string 1 =

z=1,C=1

e ™ we WE W8 WE We We We WS N8 We W w2 we W W

Low byte of return address,

~e w0 e we

ngs and return C and Z flags set

return address,
string 2 address,
string 2 address,,
string 1 address,
string 1 address

a maximum of 255 bytes long plus
e which precedes it.

string 2 THEN

we M N6 Ws N e wa WE Wy We W WE e e ws W we

8A STRING COMPARE (STRCMP} 347

IF string 1 > string 2 THEN
2=0,C=1

IF string 1 < string 2 THEN
%2=0,C=0

Registers used: All

Time: Worst case timing for strings which are equal.

e N e W WE We We W N WE ws we wp we
e e we N e N we %e Ne W4 Ne we we we

93 cycles maximum overhead plus (19 * length)
Size: Program 52 bytes
Data 4 bytes in page zero

sEQUATES
S1ADR . EQU ODCOH :PAGE ZERO POINTER TO STRING 1
S2ADR .EQU 0D2H ;PAGE ZERO POINTER TO STRING 2
STRCMP:

;GET RETURN ADDRESS

PLA

TAY

PLA

TAX

sGET THE STARTING ADDRESS OF STRING 2
PLA

STA S2ADR

PLA

STA S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1
PLA

STA S1ADR

PLA

STA S1ADR+1

;RESTORE RETURN ADDRESS
TXA
PHA
TYA
PHA

i
;DETERMINE WHICH STRING IS SHORTER

LDY $#0

LDA (S1ADR) ,Y ;GET LENGTH OF STRING #1

CMP (S2ADR) ,Y

BCC " BEGCMP ;IF STRING #2 IS SHORTER THEN
LDA (S2ADR) ,Y ;7 USE ITS LENGTH INSTEAD

i
{COMPARE THE STRINGS THROUGH THE LENGTH OF THE SHORTER STRING

v

348 sTRING MANIPULATIONS

BEGCMP: -
TAX ;X IS THE LENGTH OF THE SHORTER STRING -
BEQ TSTLEN ' ;BRANCH IF LENGTH IS ZERO
LDY #1 ;POINT AT FIRST CHARACTER OF STRINGS
CMPLP:
LDA (S1ADR) ,Y
CMP (S2ADR),Y
BNE EXIT ;BRANCH IF CHARACTERS ARE NOT EQUAL
; %Z,C WILL BE PROPERLY SET OR CLEARED
sELSE
INY ; NEXT CHARACTER
DEX ;s DECREMENT COUNTER
BNE CMPLP ; CONTINUE UNTIL ALL BYTES ARE COMPARED
;sTHE 2 STRINGS ARE EQUAL TO THE LENGTH OF THE SHORTER
;S0 USE THE LENGTHS AS THE BASIS FOR SETTING THE FLAGS
TSTLEN:
LDY #0 ;COMPARE LENGTHS
LDA (S1ADR),Y
CMP (S2ADR) ,Y :SET OR CLEAR THE FLAGS
;EXIT FROM STRING COMPARE
EXIT:
RTS
i i
H H
H SAMPLE EXECUTION: ;
H H
i H
SC0801:
LDA SADR1+1 ;PUSH STARTING ADDRESS OF STRING 1
PHA
LDA SADR1
PHA
"LDA SADR2+1 ;PUSH STARTING ADDRESS OF STRING 2
PHA
LDA SADR2
PHA
JSR STRCMP ; COMPARE
BRK ;RESULT OF COMPARING "STRING 1" AND "STRING 2"
;1S STRING 1 LESS THAN STRING 2 SO
: ;: 2=0,C=0
JMP sC0801 ; LOOP FOR ANOTHER TEST

’

;TEST DATA, CHANGE TO TEST OTHER VALUES

SADR1 .WORD sl

SADR2 .WORD s2

sl .BYTE 20H,"STRING 1 "
S2 .BYTE 20H,"STRING 2) "

. END ; PROGRAM

String Concatenation (CONCAT)

8B

Combines (concatenates) two strings,
placing the second immediately after the first
in memory. If the concatenation would pro-
duce a string longer than a specified max-
imum, the program concatenates only
enough of string 2 to give the combined
string its maximum length. The Carry flag is
cleared if all of string 2 can be concatenated
and set to 1 if part of string 2 must be drop-
ped. Both strings are a maximum of 255 bytes
long and the actual characters are preceded
by a byte containing the length.

Procedure: The program uses the length of

string 1 to determine where to start adding
characters and the length of string 2 to deter-
mine how many characters to add. If the sum
of the lengths exceeds the maximum, the
program indicates an overflow and reduces
the number of characters it must add (the
number is the maximum length minus the
length of string 1). It then moves the
appropriate number of characters from string
2 to the end of string 1, updates the length of
string 1, and sets the Carry flag to indicate
whether any characters had to be discarded.

Registers Used: All

Execution Time: Approximately 40 « NUMBER
OF CHARACTERS CONCATENATED plus
164 cycles overhead. The NUMBER OF
CHARACTERS CONCATENATED is normally
the length of string 2, but will be the maximum
length of string 1 minus its current length if the
combined string would be longer than the max-
imum. If, for example, NUMBER OF CHARAC-
TERS CONCATENATED is 14,4 (20,,), the
execution time is

40 *.20 + 161 = 800 + 164 = 964 cycles.
Program Size: 141 bytes

Data Memory Required: Seven bytes anywhere
in RAM plus four bytes on page 0. The seven
bytes anywhere in RAM are temporary storage
for the maximum length of string 1 (1 byte at
address MAXLEN), the length of string 1 (1 byte
at address SILEN), the length of string 2 (1 byte
at address S2LEN), a running index for string |
(1 byte at address S1IDX), a running index for

string 2 (1 byte at address S2IDX), a concatena-
tion counter (1 byte at address COUNT), and a
flag that indicates whether the combined strings
overflowed (1 byte at address STRGOV). The
four bytes on page 0 hold pointers to string 1 (two
bytes starting at address SIADR, address 00D0;,
in the listing) and to string 2 (two bytes starting at
address SIADR, address 00D0, in the listing).

Special Cases:

1. Ifthe concatenation would result in a string
longer than the specified maximum length, the
program concatenates only enough of string 2 to
reach the maximum. If any of string 2 must be
truncated, the Carry flag is set to 1.

2. If string 2 has a length of zero, the program
exits with the Carry flag cleared (no errors) and
string 1 unchanged. That is, a length of zero for
either string is interpreted as zero, not 256.

3. Ifthe original length of string 1 exceeds the
specified maximum length, the program exits
with the Carry flag set to 1 (indicating an error)
and string 1 unchanged.

349

350 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Maximum length of string 1

Less significant byte of starting address of
string 2

More significant byte of starting address of
string 2

Less significant byte of starting address of
string 1

More significant byte of starting address of
string 1

Exit Conditions

String 2 concatenated at the end of string 1
and the length of string 1 increased
appropriately. If the resulting string would
e'xceed_thé maximum length, only the part of
string 2 that would give string 1 its maximum
length is concatenated. If any part of string 2
must be dropped, the Carry flag is set to 1.
Otherwise, the Carry flag is cleared.

Examples

1. Data: Maximum length of string 1 = 0Ej¢ = 14,0

String 1 = 07*JOHNSON’ (07is the
length of the string)]

String 2 = 05, DON’ (05 is the length of
the string)

Result: String 1 = 0C‘'JOHNSON, DON’
(0Cg = 12,9 is the length of the
combined string with string 2
placed after string 1).

Carry = 0, since the concatenation did not
produce a string exceeding the

maximum length.

2. Data: Maximum length of string 1 = OE , = 14,4
String 1 = 07*JOHNSON’ (07 is the
length of the string)
String 2 = 09‘, RICHARD’ (09 is the
length of the string)
Result: String 1 = OE‘JOHNSON, RICHA’

(OE ¢ = 14, is the maximum
length allowed, so the last two
characters of string 2 have been
dropped.)

Carry = 1, since the contatenation
produced a string longer than the
maximum length.

Note that we are representing the initial byte (containing the length of the string) as two

hexadecimal digits in both examples.

8B STRING CONCATENATION (CONCAT) 351

; Title String Concatenation ;
; Name: CONCAT - ;
H i
H i
Purpose: Concatenate 2 strings into one string.
Entry:- TOP OF STACK

Low byte of return address,
High byte of return address,
Maximum length of string 1,
Low byte of string 2 address,
High byte of string 2 address,
Low byte of string 1 address,
High byte of string 1 address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: string 1 := string 1 concatenated with string 2
If no errors then
CARRY := 0 ’
else E
begin
CARRY :=1
if the concatenation makes string 1 too
long concatenate only the part of string 2
which will result in string 1 having its
maximum length - ' '
if length(stringl) > maximum length then
no concatenation is done
end;

Registers used: All

Time: Approximately 40 * (length of string 2) cycles
plus 161 cycles overhead

Size: Program 141 bytes
Data 7 bytes plus

4 bytes in page zero

TO WO TE NE NS N6 N6 N Ne We Ne N WE NG %e NE NG N NE M N N Ne Ne we %e we e %o Ne % N6 Ne wo Ne we we we ~
T WO T T N0 T N NE e NE Ne Ne N0 NeNe Ne MO NE Ne me % e e e ne Me Mo N6 %o %8 w6 %4 w6 %o e e e wa e

; EQUATES
S1ADR .EQU ODOH :PAGE ZERO POINTER TO STRING 1
S2ADR .EQU 0D2H iPAGE ZERO POINTER TO STRING 2
CONCAT:

:GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

352 STRING MANIPULATIONS

TOOLNG:

;GET MAXIMUM LENGTH OF STRING 1
PLA
STA

MAXLEN

;GET THE STARTING ADDRESS OF STRING 2
PLA
STA
PLA
STA

S2ADR

S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1
PLA
STA
PLA
STA

;sRESTORE RETURN ADDRESS

TXA
PHA
TYA
PHA

S1ADR

S1ADR+1

;RESTORE HIGH BYTE

;RESTORE LOW BYTE

;DETERMINE WHERE TO START CONCATENATING
LDY
LDA
STA
STA
INC
LDA
STA
LDA
STA

#0
(S1ADR) ,Y
S1LEN
S1IDX
S1IDX
(S2ADR) ,Y
S2LEN

#1

S2IDX

;GET CURRENT LENGTH OF STRING 1

:START CONCATENATING AT THE END OF STRING 1
:GET LENGTH OF STRING 2

;START CONCATENATION AT BEGINNING OF STRING 2

;DETERMINE THE NUMBER OF CHARACTERS TO CONCATENATE
LDA
CLC
ADC
BCS
CMP
BEQ
BCC

S2LEN

S1LEN
TOOLNG
MAXLEN
LENOK
LENOK

;GET LENGTH OF STRING 2

;ADD TO CURRENT LENGTH OF STRING 1
;BRANCH IF LENGTH WILL EXCEED 255 BYTES
;CHECK AGAINST MAXIMUM LENGTH

;BRANCH IF LENGTH DOES NOT EXCEED MAXIMUM

; RESULTING STRING WILL BE TOO LONG SO

INDICATE A STRING OVERFLOW, STRGOV := OFFH

SET NUMBER OF CHARACTERS TO CONCATENATE = MAXLEN - S1LEN
SET LENGTH OF STRING 1 TO MAXIMUM LENGTH

i
.
’

LDA
STA
LDA
SEC
SBC
BCC

#OFFH
STRGOV
MAXLEN

S1LEN
EXIT

;INDICATE OVERFLOW

;EXIT IF MAXIMUM LENGTH < STRING 1 LENGTH

88 STRING CONCATENATION (cONCAT) 353

i (THE ORIGINAL STRING WAS TOO LONG 1)

STA COUNT iSET COUNT TO S1LEN - MAXLEN

LDA MAXLEN '

STA S1LEN ¢SET LENGTH OF STRING 1 TO MAXIMUM
JMP DOCAT ;s PERFORM CONCATENATION

;RESULTING LENGTH DOES NOT EXCEED MAXIMUM

LENGTH OF STRING 1 = S1LEN + S2LEN

INDICATE NO OVERFLOW, STRGOV := 0

SET NUMBER OF CHARACTERS TO CONCATENATE TO LENGTH OF STRING 2

~e we we W

LENOK:
STA S1LEN ;SAVE THE SUM OF THE 2 LENGTHS
LDA #0
STA STRGOV ; INDICATE NO OVERFLOW
LDA S2LEN
STA COUNT iCOUNT := LENGTH OF STRING 2
;CONCATENATE THE STRINGS *
DOCAT:
LDA COUNT
BEQ EXIT ;EXIT IF NO BYTES TO CONCATENATE
CATLP:
LDY S2IDX
LDA (S2ADR) ,Y ;GET NEXT BYTE FROM STRING 2
LDY S1IDX
STA (S1ADR},Y ¢{MOVE IT TO END OF STRING 1
INC S1IDX * ;INCREMENT STRING 1 INDEX
INC S2IDX i INCREMENT STRING 2 INDEX
DEC COUNT : DECREMENT COUNTER
BNE CATLP ;CONTINUE UNTIL COUNT = 0
EXIT: .
LDA S1LEN ;UPDATE LENGTH OF STRING 1
LDY #0
STA (S1ADR),Y
LDA STRGOV ;GET OVERFLOW INDICATOR
ROR A ;CARRY = 1 IF OVERLOW, 0 IF NOT
RTS
H
;DATA

MAXLEN: ,BLOCK
S1LEN: .BLOCK
S2LEN: .BLOCK
S1IDX: .BLOCK
S2IDX: .BLOCK
COUNT: .BLOCK
STRGOV: ,BLOCK

iMAXIMUM LENGTH OF S1

;LENGTH OF Sl

;LENGTH OF S2

;RUNNING INDEX INTO S1

;RUNNING INDEX INTO S2
;CONCATENATION COUNTER .
iSTRING OVERFLOW FLAG

bt bt bt

SAMPLE EXECUTION:

Ne e we we
. %o we we

354 STRING MANIPULATIONS

sc0802:

LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JSR
BRK

JMP

SADR1+1 ;PUSH ADDRESS OF STRING 1
SADR1
SADR2+1 ;PUSH ADDRESS OF STRING 2
SADR2
#20H ;PUSH MAXIMUM LENGTH OF STRING 1
CONCAT ;CONCATENATE
;RESULT OF CONCATENATING "LASTNAME"

; IS S1 = 13H,"LASTNAME, FIRSTNAME"
SC0802 ;LOOP FOR ANOTHER TEST

H
; TEST DATA, CHANGE FOR OTHER VALUES

SADR1
SADR2
sl

s2

.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE

.END

sl ;STARTING ADDRESS OF STRING
s2 ;STARTING ADDRESS OF STRING
8H ;LENGTH OF Sl

"LASTNAME " ;32 BYTE
OBH ;LENGTH OF S2

", FIRSTNAME " ;32 BYTE
;s PROGRAM

AND ", FIRSTNAME®

1
2

MAX LENGTH

MAX LENGTH

8C

Find the Position of a Substring (POS)

Searches for the first occurrence of a
substring within a string. Returns the index
at which the substring starts if it is found and
0 if it is not found. The string and the
substring are both a maximum of 255 bytes
long and the actual characters are preceded
by a byte containing the length. Thus, if the
substring is found, its starting index cannot
be less than 1 or more than 255.

Procedure: The program moves through
the string searching for the substring until it
either finds a match or the remaining part of
the string is shorter than the substring and
hence cannot possibly contain it. If the
substring does not appear in the string, the
program clears the accumulator; otherwise,
the program places the starting index of the
substring in the accumulator,

Registers Used: All

Execution Time: Data-dependent, but the over-
head is 135 cycles, each successful match of one
character takes 47 cycles, and each unsuccessful
match of one character takes 50 cycles. The worst
case occurs when the string and substring always
match except for the last character in the
substring, such as
String = ‘AAAAAAAAR’
Substring = ‘AAB’
The execution time in that case is
(STRING LENGTH — SUBSTRING
LENGTH + 1) » (47 + (SUBSTRING
LENGTH - 1) + 50) + 135
If, for example, STRING LENGTH = 9 and
SUBSTRING LENGTH = 3, the execution time
is
O-=3+1D+@«C3-1)+ 50 + 135
= T=144 + 135 = 1008 + 135 = 1143
cycles.

Program Size: 124 bytes

Data Memory Required: Six bytes anywhere in
RAM plus four bytes on page 0. The six bytes
anywhere in RAM are temporary storage for the
length of the string (one byte at address SLEN),
the length of the substring (one byte at address

SUBLEN), a running index into the string (one
byte at address SIDX), a running index into the
substring (one byte at address SUBIDX), a
search counter (one byte at address COUNT),
and an index into the string (one byte at address
INDEX). The four bytes on page 0 hold pointers
to the substring (two bytes starting at address
SUBSTG, 00D0¢ in the listing) and to the string
(two bytes starting at address STRING, 00D2,,
in the listing).

Special Cases:

1. If either the string or the substring has a
length of zero, the program exits with zero in the
accumulator, indicating that it did not find the
substring.

2. If the substring is longer than the string,
the program exits with zero in the accumulator,
indicating that it did not find the substring.

3. If the program returns an index of 1, the
substring may be regarded as an abbreviation of
the string. That is, the substring occurs in the
string, starting at the first character. A typical
example would be a string PRINT and a substring
PR.

4. If the substring occurs more than once in
the string, the program will return only the index
to the first occurrence (the occurrence with the
lowest starting index).

355

356 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
substring

More significant byte of starting address of
substring

Less significant byte of starting address of
string

More significant byte of starting address of
string

Exit Conditions

Accumulator contains index at which first
occurrence of substring starts if it is found;
accumulator contains zero if substring is not
found. ‘

Examples

1. Data: String = 1D* ENTER SPEED IN MILES
PER HOUR’ (1D} = 29y is the
length of the string).

Substring = 05‘MILES’ (05 is the length
of the substring)

Result: Accumulator contains 10,4 (16,0), the
index at which the substring ‘MILES’
starts.

2. Data: String = 1B‘'SALES FIGURES FOR
JUNE 1981° (1B,4 = 27 gis the
length of the string)

Substring = 04*JUNE’ (04 is the length of
the substring)

Result: Accumulator contains 13,5 (19o), the

index at which the substring ‘JUNE’
starts.

3. Data: String = 10°LET Y1 = X1 + R7’ (104
=16, is the length of the string)
Substring = 02‘R4’ (02 is the length of

the substring)

Result: Accumulator contains 00, since the
substring ‘R4’ does not appear in the

string LET Y1 = X1 + R7.
String =07*‘RESTORE’ (07 is the length
of the string)
Substring = 03‘RES’ (03 is the length of
the substring)

4. Data:

Accumulator contains 01, the index at
which the substring ‘*‘RES’’ starts. An
index of 01 indicates that the substring
could be an abbreviation of the string;
such abbreviations are, for example, often
used in interactive programs (such as
BASIC interpreters) to save on typing and
storage.

Resul_t:

~. we we wo

TO WO MO T TH NE e Ne N %e Ne e e NE NE NE Ne Ve N Ne NE e NS % Ne N6 N we ne we s %o %o e AE e we we we Ne %o we me %o %o ws we o

;EQUATES

Title
Name:

Purpose:

Entry:

BExit:

Registers used:

Time:

8C FIND THE POSITION OF A SUBSTRING (POS)

Find the position of a ‘substring in a string
POS

Search for the first occurrence of a substring
within a string and return its starting index.
If the substring is not found a 0 is returned.

TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of substring address,
High byte of substring address,
Low byte of string address,
High byte of string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

If the substring is found then
Register A = its starting index
else
Register A = 0

All

Since the algorithm is so data dependent
a simple formula is impossible but the
following statements are true and a
worst case is given below:

135 cycles overhead.
Each match of 1 character takes 47 cycles
A mismatch takes 50 cycles.

Worst case timing will be when the
string and substring always match
except for the last character of the
substring, Such as:

string = 'AAAAAAAAAB'

substring = 'AAB'
135 cycles overhead plus

(length(string) - length(substring) + 1) *

Size:

(((length(substring)-1) .* 47) + 50)

Program 124 bytes
Data 6 bytes plus
4 bytes in page zero

357

we we we we

358 sTRING MANIPULATIONS

SUBSTG
STRING

POS:

LENOK:

SLP1:

. EQU ODOH : ;PAGE ZERC POINTER TO SUBSTRING
.EQU 0D2H :+PAGE ZERO POINTER TO STRING

;GET RETURN ADDRESS

PLA
TAY ;SAVE LOW BYTE
PLA
TAX ;SAVE HIGH BYTE

;GET THE STARTING ADDRESS OF SUBSTRING
PLA

STA SUBSTG
PLA

STA SUBSTG+1

;GET THE STARTING ADDRESS OF STRING
PLA

STA STRING

PLA

STA STRING+1

;RESTORE RETURN ADDRESS

TXA '

PHA ;RESTORE HIGH BYTE
TYA

PHA ;RESTORE LOW BYTE

;SET UP TEMPORARY LENGTH AND INDEX BYTES
LDY . #0

LDA {(STRING) ,Y :GET LENGTH OF STRING

BEQ NOTFND ;EXIT IF LENGTH OF STRING = 0
STA SLEN

LDA (SUBSTG) ,Y ;GET LENGTH OF SUBSTRING

BEQ NOTFND ;EXIT IF LENGTH OF SUBSTRING = 0
STA SUBLEN :

;IF THE SUBSTRING IS LONGER THAN THE STRING DECLARE THE

; SUBSTRING NOT FOUND

LDA | SUBLEN

CMP SLEN -

BEQ LENOK

BCS NOTFND ;CANNOT FIND SUBSTRING IF IT IS LONGER THAN
; STRING

;START SEARCH, CONTINUE UNTIL REMAINING STRING SHORTER THAN SUBSTRING

LDA #1

STA INDEX ;START LOOKING AT FIRST CHARACTER OF STRING

LDA SLEN ;CONTINUE UNTIL REMAINING STRING TOO SHORT

SEC ; COUNT=STRING LENGTH - SUBSTRING LENGTH + 1

SBC SUBLEN ’

STA COUNT

INC COUNT

;SEARCH FOR SUBSTRING IN STRING

8C FIND THE POSITION OF A SUBSTRING (P0s) 359

LDA INDEX
STA SIDX ;START STRING INDEX AT INDEX
LDA $#1
STA SUBIDX ;START SUBSTRING INDEX AT 1
; LOOK FOR SUBSTRING BEGINNING AT INDEX
CMPLP:
LDY SIDX
LDA (STRING),Y ;GET NEXT CHARACTER FROM STRING
LDY SUBIDX
CMP (SUBSTG) ,Y ;COMPARE TO NEXT CHARACTER IN SUBSTRING
BNE SLP2 ;BRANCH IF SUBSTRING IS NOT HERE
LDY SUBIDX
CPY SUBLEN ;TEST IF WE ARE DONE
BEQ FOUND ;BRANCH IF ALL CHARACTERS WERE EQUAL
INY sELSE INCREMENT TO NEXT CHARACTER
STY SUBIDX .
INC SIDX ; INCREMENT STRING INDEX
JMP CMPLP sCONTINUE
sARRIVE HERE IF THE SUBSTRING IS NOT YET FOUND
SLP2:
INC INDEX s INCREMENT INDEX
DEC COUNT s DECREMENT COUNT
BNE SLP1 sBRANCH IF NOT DONE
BEQ NOTFND sELSE EXIT NOT FOUND
FOUND: :
LDA INDEX ;SUBSTRING FOUND, A = STARTING INDEX
JMP EXIT
NOTFND:
LDA #0 s SUBSTRING NOT FOUND, A = 0
EXIT
RTS
;s DATA
SLEN: .BLOCK 1 ;LENGTH OF STRING
SUBLEN: .BLOCK 1 ;LENGTH OF SUBSTRING
SIDX: .BLOCK 1 ;RUNNING INDEX INTO STRING
SUBIDX: .BLOCK 1 ;RUNNING INDEX INTO SUBSTRING
COUNT: .BLOCK 1 sSEARCH COUNTER
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING

SAMPLE EXECUTION:

P T
e wa we v we

SC0803:
LDA SADR+1 ;PUSH ADDRESS OF THE STRING

360 STRING MANIPULATIONS

PHA

LDA SADR

PHA

LDA SUBADR+1 ;PUSH ADDRESS OF THE SUBSTRING

PHA

LDA SUBADR

PHA

JSR POS ;FIND POSITION OF SUBSTRING

BRK) ~ ;RESULT OF SEARCHING "AAAAAAAAAB" FOR "AAB" IS
; REGISTER A=8

JMP sC0803 ;LOOP FOR ANOTHER TEST

i
;TEST DATA, CHANGE FOR OTHER VALUES

SADR .WORD STG
SUBADR .WORD SSTG)
STG .BYTE OAH ;LENGTH OF STRING
.BYTE "ARAAAAAAAB " ;32 BYTE MAX LENGTH
SSTG .BYTE 3H ; LENGTH OF SUBSTRING
.BYTE "AAB " ;32 BYTE MAX LENGTH

.END ; PROGRAM

Copy a Substring from a String (COPY)

8D

Copies a substring from a string, given a
starting index and the number of bytes to
copy. The strings are a maximum of 255
bytes long and the actual characters are pre-
ceded by a byte containing the length. If the
starting index of the substring is zero (i.e.,
the substring would start in the length byte)
or is beyond the end of the string, the
substring is given a length of zero and the
Carry flag is set to 1. If the substring would
exceed its maximum length or would extend
beyond the end of the string, then only the
maximum number or the available number
of characters (up to the end of the string) are
placed in the substring, and the Carry flag is
set to 1. If the substring can be formed as
specified, the Carry flag is cleared.

Procedure: The program exits immediately
if the number of bytes to copy, the maximum
length of the substring, or the starting index
is zero. It also exits immediately if the start-
ing index exceeds the length of the string. If
none of these conditions holds, the program
checks if the number of bytes to copy exceeds
either the maximum length of the substring
or the number of characters available in the
string. If either one is exceeded, the program
reduces the number of bytes to copy
appropriately. It then copies the proper num-
ber of bytes from the string to the substring.
The program clears the Carry flag if the
substring can be formed as specified and sets
the Carry flag if it cannot.

Registers Used: All

Execution Time: Approximately 36 » NUMBER
OF BYTES COPIES plus 200 cycles overhead.

NUMBER OF BYTES COPIED is the number
specified (if no problems occur) or the number
available or the maximum length of the substring
if the copying would go beyond the end of either
the string or the substring. If, for example,
NUMBER OF BYTES COPIED = 12, (0C,),
the execution time is

36 * 12 + 200 = 432 +200 = 632 cycles.
Program Size: 173 bytes.
Data Memory Required: Six bytes anywhere in
RAM plus four bytes on page 0. The six bytes
anywhere in RAM hold the length of the string
(one byte at address SLEN), the length of the
substring (one byte at address DLEN), the max-
imum length of the substring (one byte at address
MAXLEN), the search counter (one byte at
address COUNT), the current index into the
string (one byte at address INDEX), and an error
flag (one byte at address CPYERR). The four
bytes on page 0 hold pointers to the string (two
bytes starting at address DSTRG, 00D0,¢ in the
listing) and to the substring (two bytes starting at
address SSTRG, 00D2, in the listing).

Special Cases:

1. If the number of bytes to copy is zero, the
program assigns the substring a length of zero
and clears the Carry flag, indicating no error.

2. If the maximum length of the substring is
zero, the program assigns the substring a length
of zero and sets the Carry flag to 1, indicating an
error.

3. If the starting index of the substring is zero,
the program assigns the substring a length of zero
and sets the Carry flag to 1, indicating an error.

4. If the source string does not even reach the
specified starting index, the program assigns the
substring a length of zero and sets the Carry flag
to 1, indicating an error.

5. If the substring would extend beyond the
end of the source string, the program places all
the available characters in the substring and sets
the Carry flag to 1, indicating an error. The
available characters are the ones from the starting
index to the end of the string.

6. If the substring would exceed its specified
maximum length, the program places only the
specified maximum number of characters in the
substring. It sets the Carry flag to 1, indicating an
error.

361

362 STRING MANIPULATIONS

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Maximum length of substring (destination
string)

Less significant byte of starting address of
substring (destination string)

More significant byte of starting address of
substring (destination string)

Number of bytes to copy
Starting index to copy from

Less significant byte of starting address of
string (source string)

More significant byte of starting address of
string (source string)

Exit Conditions

Substring contains characters copied from
string. If the starting index is zero, the max-
imum length of the substring is zero, or the
starting index is beyond the length of the
string, the substring will have a length of zero
and the Carry flag will be set to 1. If the
substring would extend beyond the end of
the string or would exceed its specified max-
imum length, only the available characters
from the string (up to the maximum length
of the substring) are copied into the
substring; the Carry flag is set in this case
also. If no problems occur in forming the
substring, the Carry flag is cleared.

Examples

String = 10’LET Y1 = R7 + X4’

(10,4 = 16y is the length of the string)
Maximum length of substring = 2
Number of bytes to copy = 2
Starting index = 5
Substring = 02°Y1’ (2 is the length of the

substring)

Carry = 0, since no problems occur in
forming the substring

1. Data:

Resuit:

2. Data: String = 0E‘8657 POWELL ST’

(OE,¢ = 14, is the length of the string)
Maximum length of substring = 10,4 = 164
Number of bytes to copy = 0D, = 13
Starting index == 06
Result: Substring = 09'POWELL ST’ (09 is the

length of the substring)

Carry = 1, since there were not enough
characters available in the string to
provide the specified number of bytes
to copy.

3. Data:

String = 16'9414 HEGENBERGER
DRIVE’ (16, = 22,4 is the length
of the string)

Maximum length of substring = 104
=16,

Number of bytes to copy = 11, = 174

Starting index = 06

Substring = 10'HEGENBERGER DRIV’
(10,4 = 16,4 is the length of the
substring)

Carry = 1, since the number of bytes to
copy exceeded the maximum length of
the substring

Result:

Title
Name:

s we we weo

Purpose:

Entry:

Exit:

Time:

Size:

TOTE VO VR WE N NE W0 NE N NS N e WE NG NE SO NE N M NS NS NE NG e Ne NE ME Ne NE NS Ne We Ne Ne Mo e Ns e e We N6 we we we e

;EQUATES
DSTRG . EQU
SSTRG .EQU

Registers used:

0DOH
OD2H

8D COPY A SUBSTRING FROM A STRING (COPY)

Copy a substring from a string
Copy

Copy a substring from a string given a starting
index and the number of bytes.

TOP OF STACK
Low byte of return address,
High byte of return address,
Maximum length of destination string,
Low byte of destination string address,
High byte of destination string address,
Number of bytes to copy,
Starting index to copy from,
Low byte of source string address,
High byte of source string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Destination string := The substring from the

string.

if no errors then
CARRY := 0

else
begin

the following conditions cause an

error and the CARRY flag = 1.

if (index = 0) or (maxlen = 0) or

(index > length(sstrg) then

the destination string will have a zero
length.:

if (index + count) > length(sstrg)) then
the destination string becomes everything
from index to the end of source string.

END; B

All

Approximately (36 * count) cycles plus 200
cycles overhead.

Program 173 bytes

Data 6 bytes plus
4 bytes in page zero

;PAGE ZERO POINTER TO DESTINATION STRIN
;PAGE ZERO POINTER TO SOURCE STRING

363

~e we e we

MO O NE e e W W N We N NP e e N NE N M e N N NE NS NG NI NE Ne Ne NE W Ne e %5 me W e me e we %e %6 wE we me e wa

G

364 STRING MANIPULATIONS

COPY: '
;GET RETURN ADDRESS
PLA
TAY ;SAVE LOW BYTE
. PLA
TAX ;SAVE HIGH BYTE
;GET MAXIMUM LENGTH OF DESTINATION STRING
PLA
STA MAXLEN
;GET STARTING ADDRESS OF DESTINATION STRING
PLA '
STA DSTRG ;SAVE LOW BYTE
PLA
STA DSTRG+1 ;SAVE HIGH BYTE
;GET NUMBER OF BYTES TO COPY
PLA
STA COUNT
;GET STARTING INDEX OF SUBSTRING
PLA
STA INDEX
;GET STARTING ADDRESS OF SOURCE STRING
PLA
STA SSTRG ;SAVE LOW BYTE (NOTE SSTRG=SOURCE STRING)
PLA
STA SSTRG+1 ;SAVE HIGH BYTE
;RESTORE RETURN ADDRESS
TXA
PHA ;RESTORE HIGH BYTE
TYA _
PHA ;RESTORE LOW BYTE
;INITIALIZE LENGTH OF DESTINATION STRING AND THE ERROR FLAG TO 0
LDA #0
STA DLEN ;LENGTH OF DESTINATION STRING IS ZERO
STA CPYERR ;ASSUME NO ERRORS
;CHECK FOR ZERO BYTES TO COPY OR ZERO MAXIMUM SUBSTRING LENGTH
LDA COUNT
BEQ OKEXIT ;BRANCH IF ZERO BYTES TO COPY, NO ERROR
: DSTRG WILL JUST HAVE ZERO LENGTH
LDA MAXLEN
BEQ EREXIT ;ERROR EXIT IF SUBSTRING HAS ZERO
; MAXIMUM LENGTH.
LDA INDEX
BEQ EREXIT ;ERROR EXIT IF STARTING INDEX IS ZERO

;CHECK IF THE SOURCE STRING REACHES THE STARTING INDEX
;IF NOT, EXIT ‘
LDY $#0

8D COPY A SUBSTRING FROM A STRING (copy) 3658

LDA (SSTRG) ,Y ;GET LENGTH OF SOURCE STRING

STA SLEN ;SAVE SOURCE LENGTH

CMP INDEX ;COMPARE TO STARTING INDEX

BCC EREXIT JERROR EXIT IF INDEX IS TOO LARGE

;CHECK THAT WE DO NOT COPY BEYOND THE END OF THE SOURCE STRING
;IF INDEX + COUNT - 1 > LENGTH (SSTRG) THEN
i COUNT := LENGTH(SSTRG) - INDEX + 1;

LDA INDEX

CLC

ADC COUNT :

BCS RECALC ;BRANCH IF INDEX + COUNT > 255

TAX

DEX

CPX SLEN

BCC CNT10K ;BRANCH IF INDEX + COUNT - 1 < LENGTH (SSTRG)
BEQ CNT10K - BRANCH IF EQUAL

; THE CALLER ASKED FOR TOO MANY CHARACTERS JUST RETURN EVERYTHING
; BETWEEN INDEX AND THE END OF THE SOURCE STRING.
i SO SET COUNT := LENGTH (SSTRG) - INDEX + 1;

RECALC:
LDA SLEN sRECALCULATE COUNT
SEC
SBC INDEX
STA COUNT
INC COUNT ;COUNT := LENGTH(SSTRG) - INDEX + 1
LDA #0FFH
STA CPYERR ;INDICATE A TRUNCATION OF THE COUNT
;CHECK IF THE COUNT IS LESS THAN OR EQUAL TO THE MAXIMUM LENGTH OF THE
; DESTINATION STRING. IF NOT, THEN SET COUNT TQ THE MAXIMUM LENGTH
: IF COUNT > MAXLEN THEN
H COUNT := MAXLEN
CNT1OK:
LDA COUNT :IS COUNT > MAXIMUM SUBSTRING LENGTH ?
CMP MAXLEN
BCC CNT20K iBRANCH IF COUNT < MAX LENGTH
BEQ CNT 20K iBRANCH IF COUNT = MAX LENGTH
LDA MAXLEN
STA COUNT ELSE COUNT := MAXLEN
LDA #0FFH
STA CPYERR ;INDICATE DESTINATION STRING OVERFLOW
;EVERYTHING IS SET UP SO MOVE THE SUBSTRING TO .DESTINATION STRING
CNT20K:
LDX COUNT ;REGISTER X WILL BE THE COUNTER -
BEQ EREXIT ;ERROR EXIT IF COUNT IS ZERO
LDA $#1 ;START WITH FIRST CHARACTER OF DESTINATION
STA DLEN ;DLEN IS RUNNING INDEX FOR DESTINATION
. ;INDEX IS RUNNING INDEX FOR SOURCE
MVLP:
LDY INDEX
LDA (SSTRG) , Y ;GET NEXT SOURCE CHARACTER
LDY DLEN

STA (DSTRG) , Y. ;MOVE NEXT CHARACTER TO DESTINATION

366 STRING MANIPULATIONS

INC INDEX ; INCREMENT SOURCE INDEX
INC DLEN ; INCREMENT DESTINATION INDEX
DEX s DECREMENT COUNTER
BNE MVLP ;CONTINUE UNTIL COUNTER = 0
DEC DLEN ;SUBSTRING LENGTH=FINAL DESTINATION INDEX - 1
LDA CPYERR ;CHECK FOR ANY ERRORS
BNE EREXIT ;BRANCH IF A TRUNCATION OR STRING OVERFLOW
;GOOD EXIT
OKEXIT:
CLC
BCC EXIT
;ERROR EXIT
EREXIT:
SEC
;STORE LENGTH BYTE IN FRONT OF SUBSTRING
EXIT:
LDA DLEN
LDY $0
STA (DSTRG) , Y ;:SET LENGTH OF DESTINATION STRING
RTS

!

;DATA SECTION

SLEN: .BLOCK
DLEN: .BLOCK
MAXLEN: .BLOCK
COUNT: .BLOCK
INDEX: .BLOCK
CPYERR: .BLOCK

;LENGTH OF SOURCE STRING

;LENGTH OF DESTINATION STRING
;MAXIMUM LENGTH OF DESTINATION STRING
;SEARCH COUNTER '
sCURRENT INDEX INTO STRING

;COPY ERROR FLAG

[y e

SAMPLE EXECUTION:

“~r we wme me W
e we me we W

5C0804:
LDA SADR+1 ; PUSH ADDRESS OF SOURCE STRING
PHA : '
LDA SADR
PHA
LDA IDX ; PUSH STARTING INDEX FOR COPYING
PHA
LDA CNT ;PUSH NUMBER OF CHARACTERS TO COPY
PHA
LDA DADR+1 ;PUSH ADDRESS OF DESTINATION STRING
PHA
LDA DADR
PHA
LDA MXLEN ; PUSH MAXIMUM LENGTH OF DESTINATION STRING
PHA ’

JSR COPY ;COPY

BRK

JMP

!
;DATA SECTION

IDX
CNT

MXLEN

SADR
DADR
SSTG

DSTG

.BYTE
.BYTE
.BYTE
.WORD
.WORD
.BYTE
.BYTE
.BYTE
.BYTE

. END

8D COPY A SUBSTRING FROM A STRING (CoPy) 367

;RESULT OF COPYING 3 CHARACTERS STARTING AT INDEX 4
;FROM THE STRING "12.345E+10" IS 3,"345"
5C0804 ;LOOP FOR MORE TESTING

4
3

20H

SSTG

DSTG

OAH
"12.345E+10
0

; PROGRAM

;STARTING INDEX FOR COPYING
:NUMBER OF CHARACTERS TO COPY
;MAXIMUM LENGTH OF DESTINATION STRING

;LENGTH OF STRING

" ;32 BYTE MAX LENGTH
;LENGTH OF SUBSTRING

" ;32 BYTE MAX LENGTH

Delete a Substring from a String (DELETE)

8E

Deletes a substring from a string, given a
starting index and a length. The string is a
maximum of 255 bytes long and the actual
characters are preceded by a byte containing
the length. The Carry flag is cleared if the
deletion can be performed as specified. The
Carry flag is set if the starting index is zero or
beyond the length of the string; the string is
left unchanged in either case. If the deletion
extends beyond the end of the string, the
Carry flag is set (to 1) and only the characters
from the starting index to the end of the
string are deleted.

Procedure: The program exits immediately

if the starting index or the number of bytes to
delete is zero. It also exits if the starting index
is beyond the length of the string. If none of
these conditions holds, the program checks

_to see if the string extends beyond the area to

be deleted. If it does not, the program simply
truncates the string by setting the new length
to the starting index minus 1. If it does, the
program compacts the resulting string by
moving the bytes above the deleted area
down. The program then determines the new
string’s length and exits with the Carry
cleared if the specified number of bytes were
deleted and set to 1 if any errors occurred.

Registers Used: All

‘Execution Time: Approximately
36 » NUMBER OF BYTES MOVED DOWN
+ 165 .
where NUMBER OF BYTES MOVED DOWN is
zero if the string can be truncated and is STRING
LENGTH — STARTING INDEX — NUMBER
OF BYTES TO DELETE + 1 if the string must
be compacted. .
Examples
1. STRING LENGTH = 20,4 (32,
STARTING INDEX = 19, (25,9)
NUMBER OF BYTES TO DELETE = 08

Since there are exactly eight bytes left in the
string starting at index 194, all the routine must
do is truncate the string. This takes

36«0 + 165 = 165 cycles.

2. STRING LENGTH = 40/, (64,0)
STARTING LENGTH = 19,4 (25,,)
NUMBER OF BYTES TO DELETE = 08

Since there are 20,4 (32;,) byles above the

truncated area, the routine must move them
down eight positions. The execution time is -
36+ 32 + 165 = 1152 + 165 = 1317 cycles.

Program Size: 139 bytes

Data Memory Required: Five bytes anywhere in
RAM plus two bytes on page 0. The five bytes
anywhere in RAM hold the length of the string
(one byte at address SLEN), the search counter
(one byte at address COUNT), an index into the
string (one byte at address INDEX), the source
index for use during the move (one byte at
address SIDX), and an error flag (one byte at
address DELERR). The two bytes on page 0 hold
a pointer to the string (starting at address STRG,
00DO0,, in the listing).

Special Cases:

1. If the number of bytes to delete is zero, the
program exits with the Carry flag cleared (no
errors) and the string unchanged.

2. If the string does not even extend to the
specified starting index, the program exits with
the Carry flag set to 1 (error indicated) and the
string unchanged.

3. If the number of bytes to delete exceeds the
number available, the program deletes all bytes
from the starting index to the end of the string
and exits with the Carry flag set to 1 (error indi-
cated).

368

8E DELETE A SUBSTRING FROM A STRING (DELETE)

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Number of bytes to delete
Starting index to delete from

Less significant byte of starting address of
string

More significant byte of starting address of
string

369

Exit Conditions

Substring deleted from string. If no errors
occur, the Carry flag is cleared. If the starting
index is zero or beyond the length of the
string, the Carry flag is set and the string is
unchanged. If the number of bytes to delete
would go beyond the end of the string, the
Carry flag is set and the characters from the
starting index to the end of the string are
deleted.

Examples

String = IE'SALES FOR MARCH AND
APRIL 1980° (1E = 30, is the
length of the string)

Number of bytes to delete = 0A, = 10,4

Starting index to delete from = 10, =
16,4

String = 14‘'SALES FOR MARCH 1980’
(14,4 = 20, is the length of the string
with ten bytes deleted starting with the
16th character — the deleted material is
‘AND APRIL").

Carry = 0, since no problems occurred in
the deletion.

1. Data:

Result:

2. Data: String = 28'THE PRICE IS $3.00 ($2.00
BEFORE JUNE 1)’ (28 = 40, is the
length of the string).

Number of bytes to delete = 30, = 48,
Starting index to delete from = 13,
= 19]0
Result: String = 12'THE PRICE IS $3.00" (12,

= 18,y is the length of the string with all
remaining bytes deleted).
Carry = 1, since there were not as many

bytes left in the string as were supposed
to be deleted.

Title

Name: Delete

e we we we

Purpose:

Entry: TOP OF STACK

WO M ws Ne we we e %o s we we

Delete a substring from a string

Delete a substring from a string given a
starting index and a length. :

Low byte of return address,

High byte of return address,

Number of bytes to delete (count),
Starting index to delete from (index),
Low byte of string address,

High byte of string address

. we we we

W NE Ne e me %e Ne Ne g we W
‘

370

me we we %8 WE e W WE Me WE WE we N TS e We e We me Se WE N N6 N4 S w6 e ™o

STRING MANIPULATIONS

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Substring deleted.
if no errors then
CARRY := 0
else
begin
the following conditions cause an
error with the CARRY flag = 1.
if (index = 0) or (index > length(string})
then do not change the string
if count is too large then
delete only the characters from
index to the end of the string
end;

Registers used: All

Time: Approximately 36 * (LENGTH (STRG) ~INDEX~COUNT+1)
plus 165 cycles overhead.

Size: Program 139 bytes
Data 5 bytes plus

2 bytes in page zero

; EQUATES

STRG

. EQU ODOH ;PAGE ZERO POINTER TO SOURCE STRING

DELETE:

;GET RETURN ADDRESS

PLA
TAY ;SAVE LOW BYTE
PLA
TAX) ;SAVE HIGH BYTE

;GET NUMBER OF BYTES TO DELETE

PLA
STA

COUNT

:GET STARTING INDEX DELETION

PLA
STA

INDEX

‘;GET STARTING ADDRESS OF STRING

PLA
STA
PLA
STA

STRG ;SAVE LOW BYTE

STRG+1 ;SAVE HIGH BYTE

sRESTORE RETURN ADDRESS

TXA

~e s e W6 W NE We WS WE We We WS Ve We we We WO W4 N W NE N Ne W We W N6 N

8E DELETE A SUBSTRING FROM A STRING (DELETE) 371

PHA : sRESTORE HIGH BYTE
TYA .
PHA sRESTORE LOW BYTE

sINITIALIZE ERROR INDICATOR (DELERR) TO 0
;GET STRING LENGTH

LDY $0

STY DELERR

LDA (STRG) ,Y ;GET LENGTH OF STRING

STA SLEN ;SAVE STRING LENGTH

;CHECK FOR A NON ZERO COUNT AND INDEX

LDA COUNT

BEQ OKEXIT ;GOOD EXIT IF NOTHING TO DELETE
LDA INDEX

BEQ EREXIT ;ERROR EXIT IF STARTING INDEX = 0

;CHECK FOR STARTING INDEX WITHIN THE STRING
; EXIT IF IT IS NOT

LDA SLEN ;IS INDEX WITHIN THE STRING ?
CMP INDEX
BCC EREXIT :NO, TAKE ERROR EXIT

;BE SURE THE NUMBER OF CHARACTERS .REQUESTED TO BE DELETED ARE PRESENT
i IF NOT THEN ONLY DELETE FROM THE INDEX TO THE END OF THE STRING

LDA INDEX
CLC
ADC COOUNT
BCS TRUNC iTRUNCATE- IF INDEX + COUNT > 255 -
STA SIDX iSAVE INDEX + COUNT AS THE SOURCE INDEX
TAX ;X = INDEX + COUNT :
DEX
CPX SLEN
BCC CNTOK :BRANCH IF INDEX + COUNT - 1 < LENGTH (SSTRG)
' {ELSE JUST TRUNCATE THE STRING
BEQ TRUNC : ;sTRUNCATE BUT NO ERROR (EXACTLY ENOUGH
; CHARACTERS)
LDA #0FFH
STA DELERR ;INDICATE ERROR - NOT ENOUGH CHARACTERS TO
. ; DELETE
;TRUNCATE THE STRING - NO COMPACTING NECESSARY
TRUNC: ‘
LDX INDEX iSTRING LENGTH = STARTING INDEX - 1
DEX
STX SLEN
LDA DELERR
BEQ OKEXIT ;GOOD EXIT
BNE EREXIT ;ERROR EXIT
;DELETE THE SUBSTRING BY COMPACTING
i MOVE ALL CHARACTERS ABOVE THE DELETED AREA DOWN
CNTOK:

;CALCULATE NUMBER OF CHARACTERS TO MOVE (SLEN - SIDX + 1)

372 stRING MANIPULATIONS

LDA SLEN ;GET STRING LENGTH
SEC
SBC SIDX ;SUBTRACT STARTING INDEX
TAX
INX ;ADD 1 TO INCLUDE LAST CHARACTER
BEQ OKEXIT ;BRANCH IF COUNT = 0
MVLP:
LDY SIDX
LDA (STRG) , Y ;GET NEXT CHARACTER
LDY INDEX
STA (STRG) , Y sMOVE IT DOWN
INC INDEX ; INCREMENT DESTINATION INDEX
INC SIDX ; INCREMENT SOURCE INDEX
DEX : DECREMENT COUNTER
BNE MVLP ;CONTINUE UNTIL COUNTER = 0
LDX INDEX
DEX ;STRING LENGTH = FINAL DESTINATION INDEX - 1
STX SLEN N
;GOOD EXIT
OKEXIT:
CLC
BCC EXIT
sERROR EXIT
EREXIT:
SEC
EXIT:
LDA SLEN
LDY #0
STA (STRG) , ¥ ;SET LENGTH OF STRING
RTS
; DATA
SLEN: .BLOCK 1 ; LENGTH OF SOURCE STRING
COUNT: .BLOCK 1 ;SEARCH COUNTER
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING
SIDX: .BLOCK 1 ;SOURCE INDEX DURING MOVE
DELERR: .BLOCK 1 ;DELETE ERROR FLAG

SAMPLE EXECUTION:

we wo we we we
we %o W e we

SC0805:
LDA SADR+1 ;PUSH STRING ADDRESS
PHA
LDA SADR
PHA

LDA IDX ;PUSH STARTING INDEX FOR DELETION

PHA
LDA
PHA
JSR
BRK

JMP

sDATA SECTION

IDX
CNT
SADR
SSTG

.BYTE
.BYTE
.WORD
.BYTE
.BYTE

.END

8E DELETE A SUBSTRING FROM A STRING (DELETE) 373

CNT . ;PUSH NUMBER OF CHARACTERS TO DELETE

DELETE ;DELETE
;RESULT OF DELETING 4 CHARACTERS STARTING AT INDEX 1
; FROM "JOE HANDOVER" IS "HANDOVER"

SC0805 ;LOOP FOR ANOTHER TEST

1 ;INDEX TO START OF DELETION

4 :NUMBER OF CHARACTERS TO DELETE
SSTG

12 sLENGTH OF STRING

"JOE HANDOVER"

; PROGRAM

Insert a Substring into a String (INSERT)

8F

s

Inserts a substring into a string, given a
starting index. The string and substring are
both a maximum of 255 bytes long and the
actual characters are preceded by a byte con-
taining the length. The Carry flag is cleared if
the insertion can be accomplished with no
problems. The Carry flag is set if the starting
index is zero or beyond the length of the
string. In the second case, the substring is
concatenated to the end of the string. The
Carry flag is also set if the string with the
insertion would exceed a specified maximum
length; in that case, the program inserts only
enough of the substring to give the string its
maximum length.

Procedure: The program exits immediately
if the starting index is zero or if the length of
the substring is zero. If neither of these con-
ditions holds, the program checks to see if
‘the insertion would produce a string longer

than the maximum. If it would, the program
truncates the substring. The program then
checks to see if the starting index is within
the string. If it is not, the program simply
concatenates the substring by moving it to
the memory locations immediately after the
end of the string. If the starting index is
within the string, the program must first open
a space for the insertion by moving the
remaining characters up in memory. This
move must start at the highest address to
avoid writing over any data. Finally, the pro-
gram can move the substring into the open
area. The program then determines the new
string length and exits with the Carry flag set
appropriately (to 0 if no problems occurred
and to 1 if the starting index was zero, the
substring had to be truncated, or the starting
index was beyond the length of the string).

Register; Used: All

Execution Time: Approximately 36 « NUMBER
OF BYTES MOVED + 36 *+ NUMBER OF
BYTES INSERTED + 207

NUMBER OF BYTES MOVED is the number of
bytes that must be moved to open up space for
the insertion. If the starting index is beyond the
end of the string, this is zero since the substring is
simply concatenated to the string. Otherwise, this

. is STRING LENGTH — STARTING INDEX +
1, since the bytes at or above the starting index
must be moved.

NUMBER OF BYTES INSERTED is the length
of the substring if no truncation occurs. It is the
maximum length of the string minus its current
length if inserting the substring would produce a
string longer than the maximum.

Examples

1. STRING LENGTH = 20,4 (32,5)
STARTING INDEX = 19,4 (25,¢)
MAXIMUM LENGTH = 30, (48,,)
SUBSTRING LENGTH = 06

That is, we wani to insert a substring six bytes
long, starting at the 25th character. Since there
are eight bytes that must be moved up (20,4 —
19, + 1 = NUMBER OF BYTES MOVED) and
six bytes that must be inserted, the execution
time is approximately ‘

3628 + 36+ 6 + 207 = 288 + 216 + 207
= 711 cycles.

2. STRING LENGTH = 20, (32;9) : .-
STARTING INDEX = 194 (25,()
MAXIMUM LENGTH = 24,, (369
SUBSTRING LENGTH = 06

374

8F INSEhT A SUBSTRING INTO A STRING (INSERT)

375

As opposed to Example 1, here only four bytes
of the substring can be inserted without exceed-
ing the maximum length of the string. Thus
NUMBER OF BYTES MOVED = 8 and NUM-
BER OF BYTES INSERTED = 4. The execution
time is approximately

36+8+ 36+4 + 207 = 288 + 144 + 207
= 639 cycles.

Program Size: 212 bytes

Data Memory Required: Seven bytes anywhere
in RAM plus four bytés on page 0. The seven
bytes anywhere in RAM hold the length of the
string (one byte at address SLEN), the length of
the substring (one byte at 4ddress SUBLEN), the
maximum length of the string (one byte at
address MAXLEN), the current index into the
string (one byte at address INDEX), running
indexes for use during the move (one byte at
address SIDX and one byte at address DIDX),
and an error flag (one byte at address INSERR).
The four bytes on page 0 hold pointers to the
substrmg (two bytes starting at address SUBSTG,
00DO0, in the Instmg) and the string (two bytes
starting at address STRG, 00D2 in the listing).

Special Cases:

1. If the length of the substring (the insertion)
is zero, the program exits with the Carry flag
cleared (no error) and the string unchanged.

2. If the starting index for the insertion is zero
(i.e., the insertion beginis in the length byte), the
program exits with the Carry flag set to 1 (indicat-
ing an error) and the string unchanged.

.3. If the string with the substring inserted
exceeds the specified maximum length, the pro-
gram inserts only enough characters to reach the
maximum length. The Carry flag is set to 1 to
indicate that the insertion has been truncated.

. 4. If the starting index of the insertion is
beyond the end of the string, the program con-
catenates the insertion. at the end of the string
and indicates an error by setting the Carry flag to

5. If the original length of the strmg exceeds its
specified maxirum..length, the program exits
with the Carry flag sét to 1 (mdicating an error)
and the string unchanged.

Entry Conditions

Order in stack (starting from the top)

Less significant byte of return address
More significant byte of return address

Less significant byte of starting address of
substring '

More significant byte of starting address of
substring

Maximum length of string
Starting index at which to insert the substrmg

Less significant byte of starting address of
string _

More significant byte of starting address of
string

Exit Conditioris

Substring inserted into string. If no errors
occur, the Carry flag is cleared. If the starting
index is zero or the length of the substring is
zero, the Carry flag is set and the string is not
changed. If the starting index is beyond the
length of the string, the Carry flag is set and
the substring is concatenated to the end of
the string. If the string with the substring
inserted would exceed the specified max-
imum length, the Carry flag is set and only
those characters from the substring which
bring the string to-maximum length are
inserted.

376 STRING MANIPULATIONS

Examples

1.

~ we e e

S5 %6 Ne N ME me Mo We We we %o Ne We We We WS We We We We We We W6 %e We we Vs O

Data:

Result:

String = 0A*JOHN SMITH’ (0A,, = 10, 2. Data: String = 0A*JOHN SMITH' (0A,¢ = 10,
is the length of the string) is the length of the string)

Substring = 08‘WILLIAM * (08 is the Substring = 0C*'ROCKEFELLER * (0C ¢

length of the substring) = 12/, is the length of the substring)
Maximum length of string = 14,5 = 20, - Maximum length of string = 14, = 20,
Starting index = 06 . Starting index = 06

String = 12°JOHN WILLIAM SMITH® _ Result: String = 14'JOHN

(12,4 = 18,¢ is the length of the string ROCKEFELLESMITH’ (14, = 20,4 is
with the substring inserted). the length of the string with as much of the
Carry = 0, since no problems occurred in - substring inserted as the maximum length
the insertion. would allow)
Carry = 1, since some of the substring
could not be inserted without exceeding
the maximum length of the string.

Title Insert a substring into a string ;

Name: Insert H
i
;

Purpose: Insert a substring into a string given a

starting index.

Entry: TOP OF STACK
Low byte of return address,
High byte of return address,
Low byte of substring address,
High byte of substring address,
Maximum length of (source) string,
Starting index to insert the substring,
Low byte of (source) string address,
High byte of (source) string address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

Exit: Substring inserted into string.
if no errors then
CARRY = 0
else
begin
the following conditions cause the
CARRY flag to be set.
if index = 0 then
do not insert the substring
if length(strg) > maximum length then
do not insert the substring

e ma NE e ME NP me ne e WA NS Ne Ne Ne WE e We Mo %8 WE e Ne We We we we Ve N

8F INSERT A SUBSTRING INTO A STRING (INSERT) 377

if index > length(strg) then
concatenate substg onto the end of the
source string
if length(strg)+length(substring) > maxlen
then insert only enough of the substring
to reach maximum length
end; :

Registers used: All

Time: Approximately
36 * (LENGTH(STRG) - INDEX + 1) +
36 * (LENGTH(SUBSTG)) +
207 cycles overhead.

Size: Program 214 bytes
) Data 7 bytes plus
4 bytes in page zero

N ME Ne NG NE Ne Me e Ne ME WA NE e %s e e % N Ne %
N Mo W MO N6 NP N ME Wa me N6 N we e we N e W N8 we

;EQUATES
SUBSTG .EQU ODOH ;PAGE ZERO POINTER TO SUBSTRING
STRG .EQU 0D2H ;PAGE ZERO POINTER TO STRING
INSERT:

;GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

iGET STARTING ADDRESS OF SUBSTRING

PLA

STA SUBSTG ;SAVE LOW BYTE

PLA

STA SUBSTG+1 ;SAVE HIGH BYTE

;GET MAXIMUM LENGTH OF STRING

PLA

STA MAXLEN

iGET STARTING INDEX for insertion

PLA

STA INDEX

;GET STARTING ADDRESS OF SOURCE STRING

PLA

STA STRG ;SAVE LOW BYTE

PEA

STA STRG+1 ;SAVE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

PHA sRESTORE HIGH BYTE

TYA

378 STRING MANIPULATIONS

IDXO0:

CHKLEN:

TRUNC:

IDXLEN:

PHA

;ASSUME NO ERRORS

LDA
STA

#0
INSERR

;RESTORE LOW BYTE

+ASSUME NO ERRORS WILL BE FOUND

;:GET SUBSTRING AND STRING LENGTHS
; IF LENGTH (SUBSTG) = 0 THEN EXIT BUT NO ERROR

LDY #0

LDA (STRG) , Y

STA SLEN ;GET LENGTH OF STRING

LDA (SUBSTG) ,Y

STA SUBLEN ;GET LENGTH OF SUBSTRING

BNE IDX0)
JMP OKEXIT ;EXIT IF NOTHING TO INSERT (NO ERROR)
;IF STARTING INDEX IS ZERO THEN ERROR EXIT

LDA INDEX

BNE CHKLEN ;BRANCH IF INDEX NOT EQUAL 0

JMP EREXIT ;ELSE ERROR EXIT

;CHECK THAT THE RESULTING STRING AFTER THE INSERTION FITS IN THE
SOURCE STRING. IF NOT THEN TRUNCATE THE SUBSTRING AND SET THE-
TRUNCATION FLAG.

.
’
.
'

LDA SUBLEN ;GET SUBSTRING LENGTH

CLC

ADC SLEN .

BCS TRUNC ;s TRUNCATE SUBSTRING IF NEW LENGTH > 255
CMP MAXLEN

BCC IDXLEN ;BRANCH IF NEW LENGTH < MAX LENGTH

BEQ IDXLEN :BRANCH IF NEW LENGTH = MAX LENGTH

:SUBSTRING DOES NOT FIT, SO TRUNCATE IT

LDA MAXLEN ;SUBSTRING LENGTH = MAXIMUM LENGTH - STRING
; LENGTH
SEC
SBC SLEN
BCC EREXIT ;ERROR EXIT IF MAXIMUM LENGTH < STRING LENGTH
BEQ EREXIT ;ERROR EXIT IF SUBSTRING LENGTH IS ZERO
; (THE ORIGINAL STRING WAS TOO LONG !!)
STA SUBLEN
LDA $0FFH
STA INSERR ; INDICATE SUBSTRING WAS TRUNCATED

;CHECK THAT INDEX IS WITHIN THE STRING. IF NOT CONCATENATE THE
; SUBSTRING ONTO THE END OF THE STRING.

LDA SLEN ;GET STRING LENGTH
CMP INDEX : ;COMPARE TO INDEX
BCS LENOK ;BRANCH IF STARTING INDEX IS WITHIN STRING
LDX SLEN ;sELSE JUST CONCATENATE (PLACE SUBSTRING AT

; END OF STRING)
INX

LENOCK:

OPNLP:

MVESUB:

MVELP:

STX
LDA
STA
LDA
CLC
ADC
STA
JMP

INDEX
#0FFH
INSERR
SLEN

SUBLEN
SLEN
MVESUB

8F INSERT A SUBSTRING INTO A STRING (INSERT) 379

;START RIGHT AFTER END OF STRING

i INDICATE ERROR IN INSERT
iADD SUBSTRING LENGTH TO STRING LENGTH

;JUST PERFORM MOVE, NOTHING TO OPEN UP

;OPEN UP A SPACE IN SOURCE STRING FOR THE SUBSTRING BY MOVING THE
; CHARACTERS FROM THE END OF THE SOURCE STRING DOWN TO INDEX, UP BY
; THE SIZE OF THE SUBSTRING.

;CALCULATE NUMBER OF CHARACTERS TO MOVE
:= STRING LENGTH - STARTING INDEX + 1

; COUNT

LDA
SEC
SBC
TAX
INX

SLEN

INDEX

;X = NUMBER OF CHARACTERS TO MOVE

;SET THE SOURCE INbEX AND CALCULATE THE DESTINATION INDEX

LDA
STA
CLC
ADC
STA

STA

LDY
LDA
LDY
STA
DEC
DEC

DEX"

BNE

SLEN
SIDX

SUBLEN
DIDX
SLEN

SIDX
(STRG) ,Y
DIDX
(STRG) , Y
SIDX
DIDX

OPNLP

:SOURCE ENDS AT END OF ORIGINAL STRING

A

;DESTINATION ENDS FURTHER BY SUBSTRING LENGTH
;SET THE NEW LENGTH TO THIS VALUE ALSO

iGET NEXT CHARACTER

MOVE IT UP IN MEMORY

; DECREMENT SOURCE INDEX
;DECREMENT DESTINATION INDEX
;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER = 0

;MOVE THE SUBSTRING INTO THBE OPEN AREA

LDA
STA

LDX

LDY
LDA
LDY
STA
INC
INC
DEX
BNE
LDA

#1
SIDX

SUBLEN

SIDX
(SUBSTG) , Y
INDEX
(STRG) , Y
SIDX

INDEX

MVELP
INSERR

iSTART AT ONE IN THE SUBSTRING
;START AT INDEX IN THE STRING
;X = NUMBER OF CHARACTERS TO MOVE

;GET NEXT CHARACTER

;STORE CHARACTER

; INCREMENT SUBSTRING INDEX
: INCREMENT STRING INDEX

; DECREMENT COUNT

;CONTINUE UNTIL COUNTER = 0
iGET ERROR FLAG

380 STRING MANIPULATIONS

BNE EREXIT ;BRANCH IF SUBSTRING WAS TRUNCATED
OKEXIT: .
CLC ;NO ERROR
BCC EXIT
EREXIT:
SEC ;ERROR EXIT
EXIT: .
LDA SLEN
LDY #0
STA (STRG) , ¥ ;SET' NEW LENGTH OF STRING
RTS

;
;DATA SECTION

SLEN: .BLOCK 1 ; LENGTH OF STRING
SUBLEN: .BLOCK 1 ; LENGTH OF SUBSTRING
MAXLEN: .BLOCK 1 ;MAXIMUM LENGTH OF STRING
INDEX: .BLOCK 1 ;CURRENT INDEX INTO STRING
SIDX: .BLOCK 1 ;A RUNNING INDEX
DIDX: .BLOCK 1 ;A RUNNING INDEX

1

INSERR: .BLOCK ;FLAG USED TO INDICATE IF AN ERROR

i

SAMPLE EXECUTION:

~e ne e wo e
~o w8 we we ws

sC0806:

LDA SADR+1 ;PUSH ADDRESS OF SOURCE STRING

PHA ’ .

LDA SADR

PHA

LDA IDX ;PUSH STARTING INDEX FOR INSERTION
PHA :

LDA MXLEN ;PUSH MAXIMUM LENGTH OF SOURCE STRING
PHA

LDA SUBADR+1 ;PUSH ADDRESS OF THE SUBSTRING

- PHA

LDA SUBADR

PHA

JSR INSERT ;INSERT

BRK ;RESULT OF INSERTING "-" INTO "123456" AT

; INDEX 1 IS "-123456"
-JMP $C0806 ;LOOP FOR ANOTHER TEST

:
;DATA SECTION

IDX ..BYTE 1 ;INDEX TO START INSERTION
MXLEN .BYTE 20H ;MAXIMUM LENGTH OF DESTINATION
SADR .WORD STG ;STARTING ADDRESS OF STRING
SUBADR .WORD SSTG :STARTING ADDRESS OF SUBSTRING

STG .BYTE 06H ;LENGTH OF STRING

8F INSERT A SUBSTRING INTO A STRING (NSERT} 381

.BYTE "123456 : % 732 BYTE MAX LENGTH
SSTG .BYTE 1 ; LENGTH OF SUBSTRING

.BYTE " " ;32 BYTE MAX LENGTH
. END ; PROGRAM

8-Bit Array Summation (ASUM8)

9A

Adds the elements of a byte-length array,
producing a 16-bit sum. The size of the array
is specified and is a maximum of 255 bytes.

Procedure: The program clears both bytes
of the sum initially. It then adds the elements
successively to the less significant byte of the
surn, starting with the element at the highest
address. Whenever an addition produces a
carry, the program increments the more sig-
nificant byte of the sum.

Registers Used: All

Execution Time: Approximately 16 cycles per
byte plus 39 cycles overhead. If, for example, (X)
= 1A = 26, the execution time is approx-
imately

16 = 26 + 39 = 416 + 39 = 455 cycles.
Program Size: 30 bytes

Data Memory Required: Two bytes on page 0 to
hold a pointer to the array (starting at address
ARYADR, 00D0,4 in the listing).

Special Case: An array size of zero causes an
immediate-exit with the sum equal to zero.

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array

(X) = Size of array in bytes

Exit Conditions

(A) = More significant byte of sum
(Y) = Less significant byte of sum

Example

Data: Size of array (in bytes) = (X) = 08
Array elements
F7,4 = 2479
231, = 35y
31 =149y9
70,6 = 1124
5A16 =900
16, = 22y9
CB,, = 203,
El,, = 225,

382

Result: Sum = 03D7¢ == 983,

(A) = more significant byte of sum
03¢

(Y) = less significant byte of sum = D7,

94 8-BIT ARRAY SUMMATION (Asume) 383

; Title 8 BIT ARRAY SUMMATION
; Name: ASUMS8
i
H
Purpose: SUM the data of an array, yielding a 16 bit

result. Maximum size is 255.

Entry: Register A = High byte of starting array address
Register Y = Low byte of starting array address
Register X = Size of array in bytes

Exit: Register A = High byte of sum
Register Y = Low byte of sum

Registers used: All

Time: Approximately 16 cycles per byte plus
39 cycles overhead.
Size: Program 30 bytes

Data 2 bytes in page zero

WO N NE NS NE N Ne wE we we we we %e Ne %8 W we e we we

r

; EQUATES SECTION

ARYADR: .EQU 0DOH ;PAGE ZERO POINTER TO ARRAY
ASUMS:
H
;STORE STARTING ADDRESS
STY ARYADR
STA ARYADR+1
; DECREMENT STARTING ADDRESS BY 1 FOR EFFICIENT PROCESSING
TYA "t ;GET LOW BYTE OF STARTING ADDRESS
BNE ASUMSB1 ;IS LOW BYTE ZERO ?
DEC ARYADR+1 ;YES, BORROW FROM HIGH BYTE
ASUMSB1: DEC ARYADR ;ALWAYS DECREMENT LOW BYTE
sEXIT IF LENGTH OF ARRAY IS ZERO
TXA
TAY
BEQ EXIT sEXIT IF LENGTH IS ZERO
sINITIALIZATION
LDA #0 ;INITIALIZE SUM TO 0
TAX
1SUMMATION LOOP
SUMLP: :
: CLC
ADC (ARYADR) ,Y ;ADD NEXT BYTE TO LSB OF SUM
BCC DECCNT

INX i INCREMENT MSB OF SUM IF A CARRY OCCURS

~e we e .

TV NS N Mo N6 N me me e Mo we e Ne me nE e we we wa we

384 ARRAY OPERATIONS

- e we e e

; DECREMENT COUNT
;CONTINUE UNTIL REGISTER Y EQUALS 0

;REGISTER Y
;REGISTER A

LOW BYTE OF SUM
HIGH BYTE OF SUM

. %o we we we

;Y IS LOW BYTE OF BUFFER ADDRESS
;A IS HIGH BYTE OF BUFFER ADDRESS
;X IS SIZE OF BUFFER

;SUM OF THE INITIAL TEST DATA IS 07F8 HEX,
; REGISTER A = 07, REGISTER Y = F8H

;S1ZE OF BUFFER
;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER

;BUFFER

;DECIMAL ELEMENTS ARE 0,17,34,51,68
85,102,119,136,153,170,187,204
221,238,255

.
Y
i

DECCNT:
DEY
BNE SUMLP
EXIT:
TAY
TXA
RTS
SAMPLE EXECUTION
SC0901:
LDY BUFADR
LDA BUFADR+1
LDX BUF S2
JSR ASUMS
BRK ’
JMP SC0901
;TEST DATA, CHANGE FOR OTHER VALUES
SIZE .EQU 010H
BUFADR: .WORD BUF
BUFSZ: .BYTE SI1ZE
BUF: .BYTE 0UH
.BYTE 118
.BYTE 22H
.BYTE 33H
.BYTE 44H
.BYTE 55H
.BYTE 66H
.BYTE 77H
.BYTE 88H
.BYTE 99H
.BYTE OAAH
.BYTE UBBH
.BYTE 0CCH
.BYTE * -UDDH
.BYTE UEEH
.BYTE OFFH

.END

;SUM = U7F8 (2040 DECIMAL)
; PROGRAM '

16-Bit Array Summation (ASUM16)

9B

Adds the elements of a word-length array,
producing a 24-bit sum. The size of the array
is specified and is a maximum of 255 16-bit
words. The 16-bit elements are stored in the
usual 6502 style with the less significant byte
first.

Procedure: The program clears a 24-bit
accumulator in three bytes of memory and
then adds the elements to the memory
accumulator, starting at the lowest address.
The most significant byte of the memory
accumulator is incremented each time the
addition of the more significant byte of an
element and the middle byte of the sum pro-
duces a carry. If the array occupies more than
one page of memory, the program must
increment the more significant byte- of the

Registers Used: All

Execution Time: Approximately 43 cycles per
byte plus 46 cycles overhead. If, for example, (X)
= 12/, = 18,,, the execution time is approx-
imately

43 + 18 + 46 = 774 + 46 = 820 cycles.
Program Size: 60 bytes

Data Memory Required: Three bytes anywhere
in RAM plus two bytes on page 0. The three bytes
anywhere in RAM hold the memory accumulator
(starting at address SUM); the two bytes on page
0 hold a pointer to the array (starting at address
ARYADR, 00D0, in the listing).

Special Case: An array size of 0 causes an
immediate exit with the sum equal to zero.

array pointer before proceeding to the second
page. :

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array '

(X) = Size of array in 16-bit words

Exit Conditions

(X) = Most significant byte of sum

Example

Data: Size of array (in 16-bit words) = (X) = 08
Array elements

F7AL 4 = 63,393,

239Bc = 9,115,

31D5,¢ = 12,757,

70F2,, = 28,914,

SA36,¢ = 23,094,

166C,, = 5,740,

CBF5,¢ = 52,213,

E107,¢ = 57,607,

I

(A) = Middle byte of sum
(Y) = Least significant byte of sum
Resuft: Sum = 03DBA1,¢ = 252,833,

(X) = most significant byte of sum = 03,
(A) = middle byte of sum = DB,
(Y) = least significant byte of sum = A1,

385

386 ArrAY OPERATIONS

; Title 16 BIT ARRAY SUMMATION H
; Name: ASUM16 ;
H i
i i
Purpose: Sum the data of an array, yielding a 24 bit

result. Maximum size is 255 16 bit elements.

- we wa we we

Entry: Register A
Register Y
Register X

High byte of starting array address;
Low byte of starting array address
size of array in 16 bit elements

Exit: Register X = High byte of sum
Register A = Middle byte of sum
Register Y = Low byte of sum

Registers used: All

Time: Approximately 43 cycles per byte plus
46 cycles overhead.

Size: Program 60 bytes
Data 3 bytes plus

2 bytes in page zero

~e e w6 W8 %6 Ws WO We Ws We We W@ Wh Ns W6 We WO o W8 we Ne N

e we me WO e NE wp wo we WE We We %2 W we N0 e

.
’

;EQUATES SECTION

ARYADR: .EQU 0DOH ;PAGE ZERO POINTER TO ARRAY
ASUM16:
;STORE STARTING ADDRESS
STY ARYADR
STA ARYADR+1
;2ERO SUM AND INITIALIZE INDEX
LDA #0
STA SUM ;SUM = 0
STA SUM+1
STA SUM+2
TAY ;INDEX = 0
;EXIT IF THE ARRAY LENGTH IS ZERO
TXA
BEQ EXIT

;SUMMATION LOOP

SUMLP:
LDA SUM
CLC
ADC (ARYADR) , ¥ ;ADD LOW BYTE OF ELEMENT TO SUM

STA SUM .

NXTELM:

DECCNT:

EXIT:

LDA
INY
ADC
STA
BCC
INC

INY
BNE
INC

DEX
BNE

LDY
LDA
LDX
RTS

;DATA SECTION

SUM:

e we we ne wg

$C0902:

. BLOCK

SUM+1

(ARYADR) , Y
SUM+1
NXTELM
SUM+2

DECCNT
ARYADR+1

SUMLP

SUM
SUM+1
SUM+2

3

SAMPLE EXECUTION

LDY
LDA

"LDX

’

SIZE
BUFADR:
BUFSZ:
BUF:

JSR
BRK

JMP

.EQU

.WORD
. BYTE
. WORD
+«WORD
.WORD
.WORD
. WORD
. WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD

BUFADR
BUFADR+1
BUFS2

ASUM16 !

5C0902

010H
BUF
SIZE
0
111
222
333
444
555
666
717
888
999
1010
1111
1212

9B 16-BIT ARRAY SUMMATION (Asum1e) 387

; INCREMENT INDEX TO HIGH BYTE OF ELEMENT
;{ADD HIGH BYTE WITH CARRY TO SUM
;STORE- IN MIDDLE BYTE OF SUM

: INCREMENT HIGH BYTE OF SUM IF A CARRY
;INCREMENT INDEX TO NEXT ARRAY ELEMENT
7MOVE POINTER TO SECOND PAGE OF ARRAY

; DECREMENT COUNT

;CONTINUE UNTIL REGISTER X EQUALS 0

7Y=LOW BYTE
;A=MIDDLE BYTE
;X=HIGH BYTE

;TEMPORARY 24 BIT ACCUMULATOR IN MEMORY

e we we ws we

iA,Y = STARTING ADDRES OF BUFFER

iX = BUFFER SIZE IN WORDS

;RESULT OF THE INITIAL TEST DATA IS. 12570
: REGISTER X = 0, REGISTER A = 311,

;7 REGISTER Y = 1lAH

iLOOP FOR MORE TESTING

;SIZE OF BUFFER IN WORDS
;STARTING ADDRESS OF BUFFER
iSIZE OF BUFFER IN WORDS
+BUFFER

388 ARrRAY OPERATIONS

.WORD 1313

.WORD 1414 .
.WORD 1515 ;SUM = 12570 = 311AH

.END ; PROGRAM i

Find Maximum Byte-Length Element (MAXELM)

9C

Finds the maximum element in an array
of unsigned byte-length elements. The size of
the array is specified and is a maximum of
255 bytes.

Procedure: The program exits immediately
(setting Carry to 1) if the array size is zero. If
the size is non-zero, the program assumes

that the last byte of the array is the largest and
then proceeds backward through the array,
comparing the supposedly largest element to
the current element and retaining the larger
value and its index. Finally, the program
clears the Carry to indicate a valid result.

Registers Used: All

Execution Time: Approximately 15 to 23 cycles
per byte plus 52 cycles overhead. The extra eight
cycles are used whenever the supposed max-
imum and its index must be replaced by the cur-
rent element and its index. If, on the average,
that replacement occurs half the time, the execu-
tion time is approximately
38 » ARRAY SIZE/2 + 52 cycles.

If, for example, ARRAY SIZE = 18,6 = 24,
the approximate execution time is

38 12 + 52 = 456 + 52 = 508 cycles.

Program Size: 45 bytes

Data Memory Required: One byte anywhere in
RAM plus two bytes on page 0. The one byte any-
where in RAM holds the index of the largest ele-
ment (at address INDEX). The two bytes on page
0 hold a pointer to the array (starting at address '
ARYADR, 00D0, in the listing).

Special Cases:

1. An array size of 0 causes an immediate exit
with the Carry flag set to 1 to indicate an invalid
result.

2. If more than one element has the largest
unsigned value, the program returns with the
smallest possible index. That is, the index desig-
nates the occurrence of the maximum value
closest to the starting address.

Entry Conditions

(A) = More significant byte of starting
address of array

(Y) = Less significant byte of starting
address of array

(X) = Size of array in bytes

Exit Conditions

(A) = Largest unsigned element
(Y) = Index to largest unsigned element

Carry = O if result is valid, 1 if size of array is
0 and result is meaningless.

Example

Data: Size of array (in bytes) = (X) = 08
Array elements
3516 = 5349 4416 = 689
A6y = 166, 59, = 89,
D2, = 210, TAe = 122, -
1B = 27,9 CFg = 207,

The largest unsigned element is element
#2 (D2l6 = 210[0)

(A) = largest element (D2,4)

(Y) = index to largest element (02)
Carry flag = 0, indicating that array size is
non-zero and the result is valid

Result:

389

390 ARRAY OPERATIONS

; Title Find the maximum element in an array of unsigned;
H bytes. . ;
H Name: MAXELM ;
:) H
; H
Purpose: Given the starting address of an array and

the size of the array, find the largest element

Entry: Register A
Register Y
Register X

High byte of starting address
Low byte of starting address
Size of array in bytes

Exit: 1f size of the array is not zero then

CARRY FLAG 0

"Register A Largest element

Register Y Index to that element
if there are duplicate values of the largest
element, register Y will have the index
nearest to the first array element

else
CARRY flag =1

oo n

Registers used: All

Time: Approximately 15 to 23 cycles per byte
plus 52 cycles overhead.

Size: Program 45 bytes
Data 1 byte plus

2 bytes in page zero

Ne wE % We we e Ne W ms WS NS we WE W We We wa WO WE e Ws N0 e We Wa e S Se

~e %o w6 WE w6 We We WO Wo WS We e Vs N6 We We We e wa WE N WO We W We W %o N

;EQUATES
ARYADR: .EQU 0DOH ;PAGE ZERO FOR ARRAY POINTER
MAXELM: .
. ;STORE STARTING ARRAY ADDRESS

STA ARYADR+1 ’

STY ARYADR

;SUBTRACT 1 FROM STARTING ADDRESS TO INDEX FROM 1 TO SIZE

TYA)

BNE MAX1

DEC * ARYADR+1) ;BORROW FROM HIGH BYTE IF LOW BYTE = 0
MAX1: DEC ARYADR ;ALWAYS DECREMENT THE LOW BYTE

;TEST FOR SIZE EQUAL TO ZERO AND INITIALIZE TEMPORARIES

TXA

BEQ EREXIT JERROR EXIT IF SIZE IS ZERO
TAY ;REGISTER Y = SIZE AND INDEX
LDA (ARYADR) ,Y ;GET LAST BYTE OF ARRAY

STY INDEX ;SAVE ITS INDEX

9C FIND MAXIMUM BYTE-LENGTH ELEMENT (MAXELM) 391

DEY :
BEQ OKEXIT , ;EXIT IF ONLY ONE ELEMENT

;WORK FROM THE END OF THE ARRAY TOWARDS THE BEGINNING COMPARING
; AGAINST THE CURRENT MAXIMUM WHICH IS IN REGISTER A

MAXLP:
CMP (ARYADR) , Y
BEQ ' NEWIDX ;REPLACE INDEX ONLY IF ELEMENT = MAXIMUM
BCS NXTBYT ;BRANCH IF CURRENT MAXIMUM > ARY[Y]
;ELSE ARY[Y] 3= CURRENT MAXIMUM SO
LDA (ARYADR) ,Y : NEW CURRENT MAXIMUM AND
NEWIDX: STY INDEX ; NEW INDEX
NXTBYT:
DEY ;DECREMENT TO NEXT ELEMENT
BNE MAXLP ;CONTINUE
H
;EXIT
OKEXIT: . .
LDY INDEX ;GET INDEX OF THE MAXIMUM ELEMENT
DEY ;NORMALIZE INDEX TO (0,SIZE-1)
CL